Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 24;7(10):4248-4259.
doi: 10.1039/c9bm00939f.

The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues

Affiliations

The topography of fibrous scaffolds modulates the paracrine function of Ad-MSCs in the regeneration of skin tissues

Ruiying Huang et al. Biomater Sci. .

Abstract

Injuries to the skin are common in daily life, and a certain type or size of defect is not easily restored using conventional dressings or naturally. The repair of these defects requires restoration of function in regenerated tissues. In this study, a tissue engineered skin was designed and fabricated using a bio-3D printing system. Polycaprolactone and bacterial cellulose comprised the scaffold, due to their excellent biocompatibility and multifunctionality. Adipose-derived mesenchymal stem cells (Ad-MSCs) were seeded onto the scaffold to functionalize it as an artificial skin. The finished artificial skin had mechanical properties similar to that of natural skin, and its fibrous structure providing a unique micro-environment that could regulate the paracrine function of the Ad-MSCs. This effect could be greatly increased by changes in the characteristics of the biomaterials. The artificial skin exhibited high biological activity, strong induction of cell recruitment, migration, growth and up-regulation of gene expression of relevant factors, resulting in excellent wound healing characteristics. This study clarified novel design aspects of cell-material interactions in which the topographical characteristics of materials can be further developed to establish cell signaling or communication networks that take advantage of the paracrine actions of Ad-MSCs to promote specific tissue regeneration or repair characteristics.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources