Immune checkpoint inhibitor treatment in patients with oncogene- addicted non-small cell lung cancer (NSCLC): summary of a multidisciplinary round-table discussion
- PMID: 31297240
- PMCID: PMC6586213
- DOI: 10.1136/esmoopen-2019-000498
Immune checkpoint inhibitor treatment in patients with oncogene- addicted non-small cell lung cancer (NSCLC): summary of a multidisciplinary round-table discussion
Abstract
The introduction of targeted treatments and more recently immune checkpoint inhibitors (ICI) to the treatment of metastatic non-small cell lung cancer (NSCLC) has dramatically changed the prognosis of selected patients. For patients with oncogene-addicted metastatic NSCLC harbouring an epidermal growth factor receptor (EGFR) or v-Raf murine sarcoma viral oncogene homologue B1 (BRAF) mutation or an anaplastic lymphoma kinase (ALK) or ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene alteration (translocation, fusion, amplification) mutation-specific tyrosine kinase inhibitors (TKI) are already first-line standard treatment, while targeted treatment for other driver mutations affecting MET, RET, human epidermal growth factor receptor (HER) 2, tropomyosin receptor kinases (TRK) 1-3 and others are currently under investigation. The role of ICI in these patient subgroups is currently under debate. This article summarises a round-table discussion organised by ESMO Open in Vienna in July 2018. It reviews current clinical data on ICI treatment in patients with metastatic oncogene-addicted NSCLC and discusses molecular diagnostic assessment, potential biomarkers and radiological methods for response evaluation of ICI treatment. The round-table panel concluded ICI should only be considered in patients with oncogene-addicted NSCLC after exhaustion of effective targeted therapies and in some cases possibly after all other therapies including chemotherapies. More clinical trials on combination therapies and biomarkers for ICI therapy based on the specific differing characteristics of oncogene-addicted NSCLC need to be conducted.
Keywords: NSCLC; immune checkpoint inhibitors; oncogene addiction.
Conflict of interest statement
Competing interests: ASB: Travel support: Daiichi Sankyo, Bristol-Meyers Squibb, Roche, Amgen, Merck, AbbVie; Research Support: Daiichi Sankyo; Advisory Board: Roche. BB: Travel support: Bristol-Meyers Squibb, Roche, Merck; Research support: Roche, Pfizer, Novartis; Advisory Board: Roche, Novartis; Speaker: AstraZeneca, Pfizer, Roche. AJdL: Related to this work: none; in general: Advisor for AstraZeneca, BMS, Boehringer, Pfizer, MSD, Roche; research grants from AstraZeneca, BMS, Merck-Serono, MSD, Roche. JM: Travel support: MSD, MSD, Roche; Research support: Roche, Astra-Zeneca; Advisory Board: Roche, MSD, BMS, Takeda, Astra-Zeneca, Pharmamar, Boehringer. NN: Personal financial interests (speaker’s fee and/or advisory boards): MSD, Qiagen, Biocartis, Incyte, Roche, BMS, MERCK, Thermofisher, Boehringer Ingelheim, Astrazeneca, Sanofi, Eli Lilly; Institutional financial interests (financial support to research projects): MERCK, Sysmex, Thermofisher, QIAGEN, Roche, Astrazeneca, Biocartis; non-financial interests: President, International Quality Network for Pathology (IQN Path); President Elect, Italian Cancer Society (SIC). MP: Personal fees from BMS, Astra Zeneca, Pierre Fabre, Roche, Novartis and Takeda. MP: Received honoraria for lectures, consultation or advisory board participation from the following for-profit companies: Bristol-Myers Squibb, Novartis, Gerson Lehrman Group (GLG), CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, Astra Zeneca, AbbVie, Lilly, Medahead, Daiichi Sankyo, Merck Sharp & Dome. FR: Travel support: Roche, Merck, Pfizer. Scientific advisor: Genomic Health, Roche, Guardant Health, Merck, Pfizer, Bristol-Meyers Squibb, Abbvie, Astra Zeneca, Novartis. JW: Advisory boards and lecture fees: Abbvie, AstraZeneca, BMS, Boehringer-Ingelheim, Chugai, Ignyta, Lilly, MSD, Novartis, Pfizer, Roche; research support (to institution): BMS, MSD, Novartis, Pfizer. CZ: Roche, Novartis, BMS, MSD, Imugene, Ariad, Pfizer, Merrimack/Shire, Merck KGaA, Fibrogen, AstraZeneca, Tesaro, Gilead, Servier, Eli Lilly, Amgen.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/fe088239d7cd/esmoopen-2019-000498f01.gif)
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/300fac91bd3a/esmoopen-2019-000498f02.gif)
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/c3cd93bbad64/esmoopen-2019-000498f03.gif)
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/dccdd43ae75b/esmoopen-2019-000498f04.gif)
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/53379519cf3d/esmoopen-2019-000498f05.gif)
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b33a/6586213/23317d12e3e4/esmoopen-2019-000498f06.gif)
Similar articles
-
[Driver genes expression and clinical characteristics of targeted therapy in non-small cell lung cancer in Yunnan-Kweichow Plateau].Zhonghua Zhong Liu Za Zhi. 2020 Sep 23;42(9):735-740. doi: 10.3760/cma.j.cn112152-20200323-00248. Zhonghua Zhong Liu Za Zhi. 2020. PMID: 32988155 Chinese.
-
Immunotherapy for oncogenic-driven advanced non-small cell lung cancers: Is the time ripe for a change?Cancer Treat Rev. 2018 Dec;71:47-58. doi: 10.1016/j.ctrv.2018.10.006. Epub 2018 Oct 15. Cancer Treat Rev. 2018. PMID: 30359792 Review.
-
Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches.Ther Adv Respir Dis. 2016 Apr;10(2):113-29. doi: 10.1177/1753465815617871. Epub 2015 Nov 30. Ther Adv Respir Dis. 2016. PMID: 26620497 Free PMC article. Review.
-
Oncogene-Addicted Non-Small-Cell Lung Cancer: Treatment Opportunities and Future Perspectives.Cancers (Basel). 2020 May 8;12(5):1196. doi: 10.3390/cancers12051196. Cancers (Basel). 2020. PMID: 32397295 Free PMC article. Review.
-
Targeted therapies in non-small cell lung cancer: a focus on ALK/ROS1 tyrosine kinase inhibitors.Expert Rev Anticancer Ther. 2018 Jan;18(1):71-80. doi: 10.1080/14737140.2018.1412260. Epub 2017 Dec 6. Expert Rev Anticancer Ther. 2018. PMID: 29187012 Review.
Cited by
-
Temporal Effect on PD-L1 Detection and Novel Insights Into Its Clinical Implications in Non-Small Cell Lung Cancer.Cancer Med. 2024 Oct;13(19):e70262. doi: 10.1002/cam4.70262. Cancer Med. 2024. PMID: 39382248 Free PMC article.
-
ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.Theranostics. 2021 Jan 19;11(7):3392-3416. doi: 10.7150/thno.52435. eCollection 2021. Theranostics. 2021. PMID: 33537094 Free PMC article.
-
Immune biomarkers and response to checkpoint inhibition of BRAFV600 and BRAF non-V600 altered lung cancers.Br J Cancer. 2022 Apr;126(6):889-898. doi: 10.1038/s41416-021-01679-1. Epub 2021 Dec 28. Br J Cancer. 2022. PMID: 34963703 Free PMC article.
-
Cases of ROS1-rearranged lung cancer: when to use crizotinib, entrectinib, lorlatinib, and beyond?Precis Cancer Med. 2020 Jun;3:17. doi: 10.21037/pcm-2020-potb-02. Epub 2020 Jun 15. Precis Cancer Med. 2020. PMID: 32776005 Free PMC article.
-
Expression of PD-L1 Is Associated with Inflammatory Microenvironment in Surgical Specimens of Non-Small Cell Lung Cancer.J Pers Med. 2021 Aug 4;11(8):767. doi: 10.3390/jpm11080767. J Pers Med. 2021. PMID: 34442411 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous