Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Aug;15(7):367-74.
doi: 10.1111/j.1600-0714.1986.tb00643.x.

The effect of chronic inflammation on gingival connective tissue proteoglycans and hyaluronic acid

The effect of chronic inflammation on gingival connective tissue proteoglycans and hyaluronic acid

P M Bartold et al. J Oral Pathol. 1986 Aug.

Abstract

Proteoglycans have been isolated and analysed from extracts of normal and chronically inflamed human gingiva in order to determine the effects of chronic inflammation on these important soft connective tissue extracellular macromolecules. The uronic acid content of glycosaminoglycans isolated by papain digestion of normal and inflamed gingiva did not differ significantly. Likewise, electrophoretic analysis revealed that the content of hyaluronic acid, heparan sulfate, dermatan sulfate and chondroitin sulfate was similar. The sulfated glycosaminoglycans from both sources eluted from a Sepharose C1-6B column with a Kav of 0.45 (approximate Mr 25,000). However, hyaluronic acid from normal gingiva was predominantly of a large size eluting in the void volume of a Sepharose. CL-6B column, while that isolated form inflamed tissue was mostly a small molecular weight species which eluted in the included volume of a Sepharose CL-6B column. Using dissociative conditions, intact proteoglycans could be more readily extracted from inflamed tissues (90% of the total tissue uronic acid) than from normal tissues where only 80% of the total tissue uronic acid was extractable. Even though DEAE-Sephacel ion-exchange chromatography revealed no differences in charge between normal and inflamed gingival proteoglycans, Sepharose CL-4B chromatography revealed more molecular size polydispersity in samples from inflamed tissue than from normal tissue. Taken together, these results indicate that while hyaluronic acid is depolymerized in inflamed tissue, no evidence of sulfated glycosaminoglycan degradation was found. Therefore, the most likely cause for disruption to the molecular integrity of the proteoglycans is via proteolytic alteration to the proteoglycan core protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources