U-Net: deep learning for cell counting, detection, and morphometry
- PMID: 30559429
- DOI: 10.1038/s41592-018-0261-2
U-Net: deep learning for cell counting, detection, and morphometry
Erratum in
-
Author Correction: U-Net: deep learning for cell counting, detection, and morphometry.Nat Methods. 2019 Apr;16(4):351. doi: 10.1038/s41592-019-0356-4. Nat Methods. 2019. PMID: 30804552
Abstract
U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.
Similar articles
-
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning.BMC Med Imaging. 2021 Jan 18;21(1):12. doi: 10.1186/s12880-020-00543-7. BMC Med Imaging. 2021. PMID: 33461500 Free PMC article.
-
Deep-Hook: A trusted deep learning-based framework for unknown malware detection and classification in Linux cloud environments.Neural Netw. 2021 Dec;144:648-685. doi: 10.1016/j.neunet.2021.09.019. Epub 2021 Oct 2. Neural Netw. 2021. PMID: 34656885
-
CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation.Nat Methods. 2018 Sep;15(9):677-680. doi: 10.1038/s41592-018-0106-z. Epub 2018 Aug 31. Nat Methods. 2018. PMID: 30171236 Free PMC article.
-
Breast Cancer Segmentation Methods: Current Status and Future Potentials.Biomed Res Int. 2021 Jul 20;2021:9962109. doi: 10.1155/2021/9962109. eCollection 2021. Biomed Res Int. 2021. PMID: 34337066 Free PMC article. Review.
-
Deep learning approaches for neural decoding across architectures and recording modalities.Brief Bioinform. 2021 Mar 22;22(2):1577-1591. doi: 10.1093/bib/bbaa355. Brief Bioinform. 2021. PMID: 33372958 Review.
Cited by
-
Improving and evaluating deep learning models of cellular organization.Bioinformatics. 2022 Nov 30;38(23):5299-5306. doi: 10.1093/bioinformatics/btac688. Bioinformatics. 2022. PMID: 36264139 Free PMC article.
-
InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification.BMC Bioinformatics. 2021 Mar 2;22(1):103. doi: 10.1186/s12859-021-04037-3. BMC Bioinformatics. 2021. PMID: 33653266 Free PMC article.
-
Acriflavine, a HIF-1 inhibitor, preserves vision in an experimental autoimmune encephalomyelitis model of optic neuritis.Front Immunol. 2023 Oct 23;14:1271118. doi: 10.3389/fimmu.2023.1271118. eCollection 2023. Front Immunol. 2023. PMID: 37942317 Free PMC article.
-
The Impact of Artificial Intelligence on Microbial Diagnosis.Microorganisms. 2024 May 23;12(6):1051. doi: 10.3390/microorganisms12061051. Microorganisms. 2024. PMID: 38930432 Free PMC article. Review.
-
ANMAF: an automated neuronal morphology analysis framework using convolutional neural networks.Sci Rep. 2021 Apr 14;11(1):8179. doi: 10.1038/s41598-021-87471-w. Sci Rep. 2021. PMID: 33854113 Free PMC article.
References
-
- Sommer, C, Strähle, C, Koethe, U. & Hamprecht, F. A. in Ilastik: interactive learning and segmentation toolkit in IEEE Int. Symp. Biomed. Imaging. 230–233 (IEEE: Piscataway, NJ, USA, 2011).
-
- Arganda-Carreras, I. et al. Bioinformatics 33, 2424–2426 (2017). - DOI
-
- Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 Vol. 9351, 234–241 (Springer, Cham, Switzerland, 2015).
-
- Rusk, N. Nat. Methods 13, 35 (2016). - DOI
-
- Webb, S. Nature 554, 555–557 (2018). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources