Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar;16(3):151-167.
doi: 10.1038/s41571-018-0142-8.

Cancer immunoediting and resistance to T cell-based immunotherapy

Affiliations
Review

Cancer immunoediting and resistance to T cell-based immunotherapy

Jake S O'Donnell et al. Nat Rev Clin Oncol. 2019 Mar.

Abstract

Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015). - DOI - PubMed
    1. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). - PubMed - PMC - DOI
    1. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018). - PubMed - DOI - PMC
    1. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015). - PubMed - PMC - DOI
    1. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017). - PubMed - PMC - DOI

Publication types

Substances

LinkOut - more resources