Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 21;63(1):e01676-18.
doi: 10.1128/AAC.01676-18. Print 2019 Jan.

OXA-23 Is a Prevalent Mechanism Contributing to Sulbactam Resistance in Diverse Acinetobacter baumannii Clinical Strains

Affiliations

OXA-23 Is a Prevalent Mechanism Contributing to Sulbactam Resistance in Diverse Acinetobacter baumannii Clinical Strains

Yunxing Yang et al. Antimicrob Agents Chemother. .
No abstract available

Keywords: Acinetobacter baumannii; OXA-23; resistance mechanism; sulbactam.

PubMed Disclaimer

Figures

FIG 1
FIG 1
(a) Heatmap of the presence of the β-lactamase genes of all selected clinical A. baumannii strains. Due to the lack of a breakpoint for sulbactam alone, we chose ≤4 mg/liter as the temporary susceptibility breakpoint on the basis of the CLSI susceptibility breakpoint for ampicillin-sulbactam (≤8/4 mg/liter) in A. baumannii. On the basis of the breakpoint, all clinical isolates were divided into sulbactam-nonsusceptible or sulbactam-susceptible groups. Sul-S group, sulbactam-susceptible group; Sul-NS group, sulbactam-nonsusceptible group; A, blaTEM-1; B, ISAba1-blaADC; C, blaOXA-23; D, blaOXA-58; E, blaPER-1; F, blaCARB-2. Red color represents positive, and the blue color represents negative. (b) Correlation of the characteristics of the blaOXA-23 gene associated with sulbactam MIC. All the blaOXA-23-positive strains were divided into two groups according to the transposase types carrying blaOXA-23 or copy number of blaOXA-23: Tn2009 and Tn2006, as well as single-copy group (copy number <1.5) and multicopy group (copy number >1.5).

Similar articles

Cited by

References

    1. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447. doi:10.1128/CMR.00058-16. - DOI - PMC - PubMed
    1. Neonakis IK, Spandidos DA, Petinaki E. 2011. Confronting multidrug-resistant Acinetobacter baumannii: a review. Int J Antimicrob Agents 37:102–109. doi:10.1016/j.ijantimicag.2010.10.014. - DOI - PubMed
    1. Zilberberg MD, Kollef MH, Shorr AF. 2016. Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med 11:21–26. doi:10.1002/jhm.2477. - DOI - PubMed
    1. Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, Kang M, Wang CQ, Wang AM, Xu YH, Shen JL, Sun ZY, Chen ZJ, Ni YX, Sun JY, Chu YZ, Tian SF, Hu ZD, Li J, Yu YS, Lin J, Shan B, Du Y, Han Y, Guo S, Wei LH, Wu L, Zhang H, Kong J, Hu YJ, Ai XM, Zhuo C, Su DH, Yang Q, Jia B, Huang W. 2016. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005-2014. Clin Microbiol Infect 22:S9–S14. doi:10.1016/j.cmi.2016.01.001. - DOI - PubMed
    1. Krizova L, Poirel L, Nordmann P, Nemec A. 2013. TEM-1 beta-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J Antimicrob Chemother 68:2786–2791. doi:10.1093/jac/dkt275. - DOI - PubMed

Publication types

MeSH terms