Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb 25;262(6):2435-42.

Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters

  • PMID: 3029080
Free article

Synthetic high density lipoprotein particles. Application to studies of the apoprotein specificity for selective uptake of cholesterol esters

R C Pittman et al. J Biol Chem. .
Free article

Abstract

Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate. These particles, like authentic HDL, allowed selective uptake of their cholesterol ester moieties by cultured cells without parallel uptake of the particle itself. That uptake was saturable and competed by HDL. In rats, the plasma decay kinetics and sites of uptake of a cholesteryl ether tracer were similar whether that tracer was incorporated into synthetic or authentic HDL. Synthetic particles containing other apoproteins were made by generally the same method, but using in place of apoA-I either a mixture of rat apoCs or apoE that was either competent or reductively methylated to prevent interaction with the B/E receptor. These particles, of lower density and larger Stokes radius than those made with apoA-I, also allowed selective uptake of cholesterol esters, albeit with a lower degree of selectivity than in the case of apoA-I. Thus a specific apoprotein component in the subject lipoprotein particle is not required for selective uptake. However, selective uptake was shown to be a function of particle density or size, and part of the difference in rates of selective uptake from the particles made with various apoproteins was explained by their differences in density or size.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources