Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 31;361(6405):894-899.
doi: 10.1126/science.aat7115. Epub 2018 Aug 23.

Genomic and epidemiological monitoring of yellow fever virus transmission potential

N R Faria  1 M U G Kraemer  2   3   4 S C Hill  2 J Goes de Jesus  5 R S Aguiar  6 F C M Iani  7   8 J Xavier  5 J Quick  9 L du Plessis  2 S Dellicour  10 J Thézé  2 R D O Carvalho  8 G Baele  10 C-H Wu  11 P P Silveira  6 M B Arruda  6 M A Pereira  7 G C Pereira  7 J Lourenço  2 U Obolski  2 L Abade  2   12 T I Vasylyeva  2 M Giovanetti  5   8 D Yi  13 D J Weiss  14 G R W Wint  2 F M Shearer  14 S Funk  15 B Nikolay  16   17 V Fonseca  8   18 T E R Adelino  7 M A A Oliveira  7 M V F Silva  7 L Sacchetto  8 P O Figueiredo  8 I M Rezende  8 E M Mello  8 R F C Said  19 D A Santos  19 M L Ferraz  19 M G Brito  19 L F Santana  19 M T Menezes  6 R M Brindeiro  6 A Tanuri  6 F C P Dos Santos  20 M S Cunha  20 J S Nogueira  20 I M Rocco  20 A C da Costa  21 S C V Komninakis  22   23 V Azevedo  8 A O Chieppe  24 E S M Araujo  5 M C L Mendonça  5 C C Dos Santos  5 C D Dos Santos  5 A M Mares-Guia  5 R M R Nogueira  5 P C Sequeira  5 R G Abreu  25 M H O Garcia  25 A L Abreu  26 O Okumoto  26 E G Kroon  8 C F C de Albuquerque  27 K Lewandowski  28 S T Pullan  28 M Carroll  29 T de Oliveira  5   18   30 E C Sabino  21 R P Souza  20 M A Suchard  31   32 P Lemey  10 G S Trindade  8 B P Drumond  8 A M B Filippis  5 N J Loman  9 S Cauchemez  16   17 L C J Alcantara  33   8 O G Pybus  1
Affiliations

Genomic and epidemiological monitoring of yellow fever virus transmission potential

N R Faria et al. Science. .

Abstract

The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of YFV in Brazilian Aedes species mosquitos highlights a need to monitor the risk of reestablishment of urban YFV transmission in the Americas. We use a suite of epidemiological, spatial, and genomic approaches to characterize YFV transmission. We show that the age and sex distribution of human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial expansion toward previously YFV-free areas, followed by a rise in viral spillover to humans in late 2016. Our results establish a framework for monitoring YFV transmission in real time that will contribute to a global strategy to eliminate future YFV epidemics.

PubMed Disclaimer

Conflict of interest statement

Competing interests

N.J.L. and L.C.J.A. received free-of-charge reagents in support of the project from Oxford Nanopore Technologies.

Figures

Fig. 1
Fig. 1. Spatial and temporal epidemiology of YFV and CHIKV in Minas Gerais, MG.
(A) Time series of human YFV cases in MG (676 cases across 61 municipalities) confirmed by serology, RT-qPCR or virus isolation during the first YFV epidemic wave (Aug 2016 to Oct 2017). (B) Same as panel A, but showing NHP YFV cases (313 cases across 90 municipalities), confirmed by RT-qPCR. (C) Same as panel A, but for human CHIKV cases (3668 cases across 129 municipalities). (D) Geographic distribution of human YFV cases in MG. (E) Geographic distribution of NHP YFV cases in MG. Fig. S2 shows the corresponding geographic distribution of CHIKV cases. (F) Association between the number of human and NHP cases in each municipality of MG (Pearson’s r=0.62; p<0.0001; non-parametric Spearman’s rank ρ=0.32; p<0.05).
Fig. 2
Fig. 2. Age and sex distribution of YFV cases in Minas Gerais, 2016-2017.
Red bars show the proportion of observed YFV cases in Minas Gerais that occur in each age class, in (A) males and (B) females. These empirical distributions are different from those predicted under two models of urban cycle transmission (M1 = white bars and M2 = orange bars; see text for details).
Fig. 3
Fig. 3. Molecular phylogenetics of the Brazilian YFV epidemic.
(A) Maximum likelihood phylogeny of complete YFV genomes showing the outbreak clade (red triangle) within the SA1 genotype (see Figs. 4 and S6 for details). SA2, WAfr and EAfr indicate the South America II, West African, and East Africa genotypes, respectively. For clarity, five YFV strains introduced to Venezuela from Brazil (49) are not shown. The scale bar is in units of substitutions per site (s/s). Node labels indicate bootstrap support values. RO 2002 = strain BeH655417 from Roraima. MG 2003 = two strains from the previous YF outbreak in MG in 2003. 17DD = the vaccine strain used in Brazil. AO 2016 = YFV outbreak Angola in 2015-2016 (13). (B) Root-to-tip regression of sequence sampling date against genetic divergence from the root of the outbreak clade (see Fig. S6A). Sequences are coloured by sampling location. (C) Violin plots showing estimated posterior distributions (white circle=mean) of the time of the most common ancestor (TMRCA) of the outbreak clade. Estimates were obtained using two different datasets (grey=SA1 genotype, red=outbreak clade) and under different evolutionary models: a=uncorrelated lognormal relaxed clock (UCLN) model with a skygrid tree prior with covariates (specifically, the time series data shown in Figs. 1A-C; see Fig. S7); b=UCLN model with a skygrid tree prior without covariates; c=fixed local clock model (see Supplementary Materials).
Fig. 4
Fig. 4. Spatial and evolutionary dynamics of YFV outbreak.
(A) Frequency of detection of YFV in non-human primates in the Americas (50). Circle sizes represent the proportion of published studies (n=15) that have detected YFV in each primate family and region. SA=South America (except Brazil), CA=Central America, CB=Caribbean, BR1=Brazil (before 2017), BR2=Brazil (this study). (B) Maximum clade credibility phylogeny inferred under a two-state (human and NHP) structured coalescent model. External node symbols denote sample type. Grey bars and labels to the indicate sample location (RJ=Rio de Janeiro, ES=Espírito Santo, BA=Bahia, others were sampled in MG). Internal nodes whose posterior state probabilities are >0.8 are annotated by circles. Node labels indicate posterior state probabilities for selected nodes. Internal branches are coloured blue for NHP, red for human. Fig. S8 shows a fully annotated tree. (C). The average number of YFV phylogenetic state transitions (from NHP to human) per month. Solid line=median estimate. Shaded area=95% BCI. (D) Expansion of the YFV epidemic wavefront estimated using a continuous phylogeographic approach (35). At each timepoint the plot shows the maximum spatial distance between phylogeny branches and the inferred location of outbreak origin. Solid line = median estimate. Shaded area = 95% BCI. (E) Reconstructed spatiotemporal diffusion of the YFV outbreak. Phylogeny branches are arranged in space according the locations of phylogeny nodes (circles). Locations of external nodes are known, whilst those of internal nodes are inferred (44). DF=Distrito Federal, GO=Goiás, SP=São Paulo. Shaded regions show 95% credible regions of internal nodes. Nodes and uncertainty regions are coloured according to time.

Comment in

  • The reemergence of yellow fever.
    Barrett ADT. Barrett ADT. Science. 2018 Aug 31;361(6405):847-848. doi: 10.1126/science.aau8225. Epub 2018 Aug 23. Science. 2018. PMID: 30139914 No abstract available.
  • Monitoring yellow fever.
    Stower H. Stower H. Nat Med. 2018 Dec;24(12):1781. doi: 10.1038/s41591-018-0280-7. Nat Med. 2018. PMID: 30523315 No abstract available.

Similar articles

Cited by

  • Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil.
    Adelino TÉR, Giovanetti M, Fonseca V, Xavier J, de Abreu ÁS, do Nascimento VA, Demarchi LHF, Oliveira MAA, da Silva VL, de Mello ALES, Cunha GM, Santos RH, de Oliveira EC, Júnior JAC, de Melo Iani FC, de Filippis AMB, de Abreu AL, de Jesus R, de Albuquerque CFC, Rico JM, do Carmo Said RF, Silva JA, de Moura NFO, Leite P, Frutuoso LCV, Haddad SK, Martínez A, Barreto FK, Vazquez CC, da Cunha RV, Araújo ELL, de Oliveira Tosta SF, de Araújo Fabri A, Chalhoub FLL, da Silva Lemos P, de Bruycker-Nogueira F, de Castro Lichs GG, Zardin MCSU, Segovia FMC, Gonçalves CCM, Grillo ZDCF, Slavov SN, Pereira LA, Mendonça AF, Pereira FM, de Magalhães JJF, Dos Santos Júnior ACM, de Lima MM, Nogueira RMR, Góes-Neto A, de Carvalho Azevedo VA, Ramalho DB, Oliveira WK, Macario EM, de Medeiros AC, Pimentel V; Latin American Genomic Surveillance Arboviral Network; Holmes EC, de Oliveira T, Lourenço J, Alcantara LCJ. Adelino TÉR, et al. Nat Commun. 2021 Apr 16;12(1):2296. doi: 10.1038/s41467-021-22607-0. Nat Commun. 2021. PMID: 33863880 Free PMC article.
  • Investigation of the validity of two Bayesian ancestral state reconstruction models for estimating Salmonella transmission during outbreaks.
    Bloomfield S, Vaughan T, Benschop J, Marshall J, Hayman D, Biggs P, Carter P, French N. Bloomfield S, et al. PLoS One. 2019 Jul 22;14(7):e0214169. doi: 10.1371/journal.pone.0214169. eCollection 2019. PLoS One. 2019. PMID: 31329588 Free PMC article.
  • An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar.
    Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, Paul LM, Brackney DE, Grewal S, Gurfield N, Van Rompay KKA, Isern S, Michael SF, Coffey LL, Loman NJ, Andersen KG. Grubaugh ND, et al. Genome Biol. 2019 Jan 8;20(1):8. doi: 10.1186/s13059-018-1618-7. Genome Biol. 2019. PMID: 30621750 Free PMC article.
  • Circulation of chikungunya virus East/Central/South African lineage in Rio de Janeiro, Brazil.
    Xavier J, Giovanetti M, Fonseca V, Thézé J, Gräf T, Fabri A, Goes de Jesus J, Lima de Mendonça MC, Damasceno Dos Santos Rodrigues C, Mares-Guia MA, Cardoso Dos Santos C, Fraga de Oliveira Tosta S, Candido D, Ribeiro Nogueira RM, Luiz de Abreu A, Kleber Oliveira W, Campelo de Albuquerque CF, Chieppe A, de Oliveira T, Brasil P, Calvet G, Carvalho Sequeira P, Rodrigues Faria N, Bispo de Filippis AM, Alcantara LCJ. Xavier J, et al. PLoS One. 2019 Jun 11;14(6):e0217871. doi: 10.1371/journal.pone.0217871. eCollection 2019. PLoS One. 2019. PMID: 31185030 Free PMC article. Clinical Trial.
  • West Nile virus transmission potential in Portugal.
    Lourenço J, Barros SC, Zé-Zé L, Damineli DSC, Giovanetti M, Osório HC, Amaro F, Henriques AM, Ramos F, Luís T, Duarte MD, Fagulha T, Alves MJ, Obolski U. Lourenço J, et al. Commun Biol. 2022 Jan 10;5(1):6. doi: 10.1038/s42003-021-02969-3. Commun Biol. 2022. PMID: 35013546 Free PMC article.

References

    1. Garske T, et al. Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Medicine. 2014;11:e1001638. - PMC - PubMed
    1. Paules CI, Fauci AS. Yellow Fever - Once Again on the Radar Screen in the Americas. The New England Journal of Medicine. 2017:1397–1399. - PubMed
    1. Theiler M, Smith HH. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J Exp Med. 1937;65:767–786. - PMC - PubMed
    1. Shearer FM, et al. Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis. The Lancet Infectious Diseases. 2017;17:1209–1217. - PMC - PubMed
    1. Nunes MR, et al. Genomic and phylogenetic characterization of Brazilian yellow fever virus strains. Journal of Virology. 2012;86:13263–13271. - PMC - PubMed

Publication types

MeSH terms