Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun;285(12):2243-2262.
doi: 10.1111/febs.14477. Epub 2018 May 3.

E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins

Affiliations
Free article

E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins

Richa Khanna et al. FEBS J. 2018 Jun.
Free article

Abstract

Lamins are key nuclear proteins which are important for maintaining nuclear structure and function. Mutations in lamins cause a spectrum of genetic diseases termed as laminopathies. RING finger containing E3 ubiquitin ligase, RNF123, is transcriptionally upregulated in cells expressing rod domain lamin A mutations. However, the functional relevance of RNF123 in laminopathic cells is not clear. Using a mass spectrometry-based approach, we identified lamins and lamin-binding proteins retinoblastoma protein (pRb), lamina-associated polypeptide 2α (LAP2α), and emerin as RNF123-interacting proteins. We determined that RNF123 mediated the ubiquitination of these proteins and caused the proteasomal degradation of pRb, LAP2α, and lamin B1. Furthermore, these proteins were also targeted for proteasomal degradation in cells expressing lamin A rod domain mutants G232E, Q294P, and R386K. Overexpression of RNF123 resulted in delayed transit through the S-phase which was alleviated by coexpression of pRb or LAP2α. Our findings imply that RNF123-mediated ubiquitination of lamin-binding proteins may contribute to disease-causing mechanisms in laminopathies by depletion of key nuclear proteins and defects in cell cycle kinetics.

Keywords: laminopathy; nuclear lamina; nuclear organization; protein degradation; ubiquitination.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources