Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments
- PMID: 29476162
- PMCID: PMC5824817
- DOI: 10.1038/s41598-018-21841-9
Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments
Abstract
Multidrug-resistant Acinetobacter baumannii, a major hospital-acquired pathogen, is a serious health threat and poses a great challenge to healthcare providers. Although there have been many genomic studies on the evolution and antibiotic resistance of this species, there have been very limited transcriptome studies on its responses to antibiotics. We conducted a comparative transcriptomic study on 12 strains with different growth rates and antibiotic resistance profiles, including 3 fast-growing pan-drug-resistant strains, under separate treatment with 3 antibiotics, namely amikacin, imipenem, and meropenem. We performed deep sequencing using a strand-specific RNA-sequencing protocol, and used de novo transcriptome assembly to analyze gene expression in the form of polycistronic transcripts. Our results indicated that genes associated with transposable elements generally showed higher levels of expression under antibiotic-treated conditions, and many of these transposon-associated genes have previously been linked to drug resistance. Using co-expressed transposon genes as markers, we further identified and experimentally validated two novel genes of which overexpression conferred significant increases in amikacin resistance. To the best of our knowledge, this study represents the first comparative transcriptomic analysis of multidrug-resistant A. baumannii under different antibiotic treatments, and revealed a new relationship between transposons and antibiotic resistance.
Conflict of interest statement
The authors declare no competing interests.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/84485fd0e9a6/41598_2018_21841_Fig1_HTML.gif)
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/9447e0b6ec16/41598_2018_21841_Fig2_HTML.gif)
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/7dd95f1edaa1/41598_2018_21841_Fig3_HTML.gif)
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/cc2cfaf727d8/41598_2018_21841_Fig4_HTML.gif)
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/8b2c08dd90f3/41598_2018_21841_Fig5_HTML.gif)
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f334/5824817/e7e8c2c3c354/41598_2018_21841_Fig6_HTML.gif)
Similar articles
-
Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii.Int J Antimicrob Agents. 2012 Jan;39(1):33-8. doi: 10.1016/j.ijantimicag.2011.08.016. Epub 2011 Oct 12. Int J Antimicrob Agents. 2012. PMID: 21996406
-
[Molecular characterization of beta-lactamase-associated resistance in Acinetobacter baumannii strains isolated from clinical samples].Mikrobiyol Bul. 2014 Jul;48(3):365-76. Mikrobiyol Bul. 2014. PMID: 25052103 Turkish.
-
High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa - an update.BMC Infect Dis. 2015 Nov 14;15:521. doi: 10.1186/s12879-015-1246-8. BMC Infect Dis. 2015. PMID: 26573617 Free PMC article.
-
Genetic basis of antibiotic resistance in pathogenic Acinetobacter species.IUBMB Life. 2011 Dec;63(12):1061-7. doi: 10.1002/iub.532. Epub 2011 Oct 12. IUBMB Life. 2011. PMID: 21990280 Review.
-
The AbaR antibiotic resistance islands found in Acinetobacter baumannii global clone 1 - Structure, origin and evolution.Drug Resist Updat. 2018 Nov;41:26-39. doi: 10.1016/j.drup.2018.10.003. Epub 2018 Nov 2. Drug Resist Updat. 2018. PMID: 30472242 Review.
Cited by
-
Multidrug resistance plasmids commonly reprogram the expression of metabolic genes in Escherichia coli.mSystems. 2024 Mar 19;9(3):e0119323. doi: 10.1128/msystems.01193-23. Epub 2024 Feb 20. mSystems. 2024. PMID: 38376169 Free PMC article.
-
Deciphering Antibiotic-Targeted Metabolic Pathways in Acinetobacter baumannii: Insights from Transcriptomics and Genome-Scale Metabolic Modeling.Life (Basel). 2024 Sep 2;14(9):1102. doi: 10.3390/life14091102. Life (Basel). 2024. PMID: 39337886 Free PMC article.
-
Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant Acinetobacter baumannii.mSystems. 2019 Apr 16;4(2):e00068-19. doi: 10.1128/mSystems.00068-19. eCollection 2019 Mar-Apr. mSystems. 2019. PMID: 31020041 Free PMC article.
-
Transcriptome-based design of antisense inhibitors potentiates carbapenem efficacy in CRE Escherichia coli.Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30699-30709. doi: 10.1073/pnas.1922187117. Epub 2020 Nov 16. Proc Natl Acad Sci U S A. 2020. PMID: 33199638 Free PMC article.
-
Selection and validation of reference genes suitable for gene expression analysis by Reverse Transcription Quantitative real-time PCR in Acinetobacter baumannii.Sci Rep. 2024 Feb 15;14(1):3830. doi: 10.1038/s41598-024-51499-5. Sci Rep. 2024. PMID: 38360762 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical