Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Mar;108(3):855-64.
doi: 10.1083/jcb.108.3.855.

Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH

Affiliations

Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH

J Heuser. J Cell Biol. 1989 Mar.

Abstract

Lysosomes labeled by uptake of extracellular horseradish peroxidase display remarkable changes in shape and cellular distribution when cytoplasmic pH is experimentally altered. Normally, lysosomes in macrophages and fibroblasts cluster around the cell center. However, when the cytoplasmic pH is lowered to approximately pH 6.5 by applying acetate or by various other means, lysosomes promptly move outward and accumulate in tight clusters at the very edge of the cell, particularly in regions that are actively ruffling before acidification but become quiescent. This movement follows the distribution of microtubules in these cells, and does not occur if microtubules are depolymerized with nocodazole before acidification. Subsequent removal of acetate or the other stimuli to acidification results in prompt resumption of ruffling activity and return of lysosomes into a tight cluster at the cell center. This is correlated with a rebound alkalinization of the cytoplasm. Correspondingly, direct application of weak bases also causes hyperruffling and unusually complete withdrawal of lysosomes to the cell center. Thus, lysosomes appear to be acted upon by microtubule-based motors of both the anterograde (kinesin) type as well as the retrograde (dynein) type, or else they possess bidirectional motors that are reversed by changes in cytoplasmic pH. During the outward movements induced by acidification, lysosomes also appear to be smaller and more predominantly vesicular than normal, while during inward movements they appear to be more confluent and elongated than normal, often becoming even more tubular than in phorbol-treated macrophages (Phaire-Washington, L., S. C. Silverstein, and E. Wang. 1980. J. Cell Biol. 86:641-655). These size and shape changes suggest that cytoplasmic pH also affects the fusion/fission properties of lysosomes. Combined with pH effects on their movement, the net result during recovery from acidification is a stretching of lysosomes into tubular forms along microtubules.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1977 Nov;75(2 Pt 1):381-7 - PubMed
    1. J Cell Biol. 1977 Nov;75(2 Pt 1):541-58 - PubMed
    1. J Cell Biol. 1987 Apr;104(4):1047-57 - PubMed
    1. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1921-5 - PubMed
    1. J Cell Biol. 1987 Aug;105(2):679-89 - PubMed

Publication types