Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1:8:41.
doi: 10.1186/s13229-017-0151-y. eCollection 2017.

A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model

Affiliations

A brain proteomic investigation of rapamycin effects in the Tsc1+/- mouse model

Hendrik Wesseling et al. Mol Autism. .

Abstract

Background: Tuberous sclerosis complex (TSC) is a rare monogenic disorder characterized by benign tumors in multiple organs as well as a high prevalence of epilepsy, intellectual disability and autism. TSC is caused by inactivating mutations in the TSC1 or TSC2 genes. Heterozygocity induces hyperactivation of mTOR which can be inhibited by mTOR inhibitors, such as rapamycin, which have proven efficacy in the treatment of TSC-associated symptoms. The aim of the present study was (1) to identify molecular changes associated with social and cognitive deficits in the brain tissue of Tsc1+/- mice and (2) to investigate the molecular effects of rapamycin treatment, which has been shown to ameliorate genotype-related behavioural deficits.

Methods: Molecular alterations in the frontal cortex and hippocampus of Tsc1+/- and control mice, with or without rapamycin treatment, were investigated. A quantitative mass spectrometry-based shotgun proteomic approach (LC-MSE) was employed as an unbiased method to detect changes in protein levels. Changes identified in the initial profiling stage were validated using selected reaction monitoring (SRM). Protein Set Enrichment Analysis was employed to identify dysregulated pathways.

Results: LC-MSE analysis of Tsc1+/- mice and controls (n = 30) identified 51 proteins changed in frontal cortex and 108 in the hippocampus. Bioinformatic analysis combined with targeted proteomic validation revealed several dysregulated molecular pathways. Using targeted assays, proteomic alterations in the hippocampus validated the pathways "myelination", "dendrite," and "oxidative stress", an upregulation of ribosomal proteins and the mTOR kinase. LC-MSE analysis was also employed on Tsc1+/- and wildtype mice (n = 34) treated with rapamycin or vehicle. Rapamycin treatment exerted a stronger proteomic effect in Tsc1+/- mice with significant changes (mainly decreased expression) in 231 and 106 proteins, respectively. The cellular pathways "oxidative stress" and "apoptosis" were found to be affected in Tsc1+/- mice and the cellular compartments "myelin sheet" and "neurofilaments" were affected by rapamycin treatment. Thirty-three proteins which were altered in Tsc1+/- mice were normalized following rapamycin treatment, amongst them oxidative stress related proteins, myelin-specific and ribosomal proteins.

Conclusions: Molecular changes in the Tsc1+/- mouse brain were more prominent in the hippocampus compared to the frontal cortex. Pathways linked to myelination and oxidative stress response were prominently affected and, at least in part, normalized following rapamycin treatment. The results could aid in the identification of novel drug targets for the treatment of cognitive, social and psychiatric symptoms in autism spectrum disorders. Similar pathways have also been implicated in other psychiatric and neurodegenerative disorders and could imply similar disease processes. Thus, the potential efficacy of mTOR inhibitors warrants further investigation not only for autism spectrum disorders but also for other neuropsychiatric and neurodegenerative diseases.

Keywords: Animal model; Proteomics; Rapamycin; SRM; Tuberous sclerosis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

All animal experiments were approved by the Dutch Ethical Committee or in accordance with Institutional Animal Care and Use Committee guidelines.

All animal experiments were approved by the Dutch Animal Experiment Committee (Dierexperimenten commissie [DEC]) and in accordance with Dutch animal care and use laws.

Consent for publication

Not applicable.

Competing interests

S.B. is a director of Psynova Neurotech Ltd. and PsyOmics Ltd. The other authors declare no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Label-free LC-MSE and Label-based SRM analysis of Tsc1+/− and wildtype mice under rapamycin and vehicle treatment identifies distinct proteomic changes. a) Flow chart of the experimental design. b) Significant protein changes in the hippocampus of rapamycin-treated WT and Tsc1 +/− mice identified by label-free LC-MSE. Orange dots refer to proteins that are increased in abundance, and green dots represent downregulated proteins following rapamycin treatment. c 2 and 4 (see below) refer to significantly changed proteins following rapamycin treatment in wildtype (“treatment effect in Wt mice”) or Tsc1+/− mice (“treatment effect in Tsc1 +/− mice”). Protein enrichment analysis was performed on the identified proteins. Yellow and blue dots represent the TSC genotype effect following rapamycin or vehicle treatments (b 1 and 2) and are linked to c 1 and 3. Proteins changing due to a combination of TSC genotype and rapamycin treatment are labeled black or purple, respectively. b 1 Rapamycin induced changes in wildtype mice as compared to Tsc1 +/− mice following vehicle treatment. b 2 Rapamycin induced changes in Tsc1 +/− mice compared to Tsc1 +/− alterations following rapamycin treatment. c) Bar plots of genotype and treatment effects identified through global protein profiling and significantly changed proteins identified in the targeted SRM analysis. Number of significant proteins, percentage of up- and downregulated proteins and enriched pathways linked to the up- and downregulated proteins are displayed
Fig. 2
Fig. 2
Multivariate analysis of LC-MSE estimates as shown by condition plots illustrating the differences between the WT and Tsc1 +/− mice with and without rapamycin treatment. X-axis is condition and y-axis is log ratio of endogenous (L light) over reference (H heavy) peptides. Dots represent the mean of the log2 ratio for each condition, and error bars indicate the confidence intervals with 0.95 significance. The interval is not related to the model based analysis. Significant changes as measured by LC-MSE are indicated below each protein. Illustrated are examples of proteins which are affected by rapamycin treatment and which are normalized by rapamycin treatment. Corrected p values (p*) were determined by post hoc correction after Benjamini-Hochberg [91]. CR = Wt + rapamycin, CS = Wt + vehicle, TR = Tsc1 +/− + rapamycin, TS = Tsc1 +/− − rapamycin
Fig. 3
Fig. 3
Multivariate analysis of SRM estimates as shown by condition plots illustrating the differences between Wt and Tsc1 +/− mice with and without rapamycin treatment. X-axis represents the condition and the y-axis the log ratio of endogenous (L light) over reference (H heavy) peptides. Dots represent the mean of log2 ratio for each condition, and error bars indicate the confidence intervals with 0.95 significance. The interval is not related to the model based analysis. Significant changes as measured by LC-MSE are indicated below each protein. SRM was able to validate protein abundance changes identified by label-free LC-MSE. Corrected p values (p*) were determined by post hoc correction after Benjamini-Hochberg [91]

Similar articles

Cited by

References

    1. Islam MP, Roach ES. Tuberous sclerosis complex. Handb Clin Neurol. 2015;132:97–109. doi: 10.1016/B978-0-444-62702-5.00006-8. - DOI - PubMed
    1. de Vries PJ, Prather PA. The tuberous sclerosis complex. N Engl J Med. 2007;356(1):92. doi: 10.1056/NEJMc062928. - DOI - PubMed
    1. Joinson C, O'Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med. 2003;33(2):335–344. doi: 10.1017/S0033291702007092. - DOI - PubMed
    1. Roach ES, Smith M, Huttenlocher P, Bhat M, Alcorn D, Hawley L. Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol. 1992;7(2):221–224. doi: 10.1177/088307389200700219. - DOI - PubMed
    1. Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14(7):733–745. doi: 10.1016/S1474-4422(15)00069-1. - DOI - PubMed