Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb 15;261(5):2256-63.

Exchange of cystine and glutamate across plasma membrane of human fibroblasts

  • PMID: 2868011
Free article

Exchange of cystine and glutamate across plasma membrane of human fibroblasts

S Bannai. J Biol Chem. .
Free article

Abstract

It is found that both the inward and outward transport of cystine and glutamate through the plasma membrane of cultured human fibroblasts is mediated mostly by a single transport system. Cystine and glutamate at one side of the membrane stimulate the passage of these amino acids present at the other side of the membrane. When the concentration of intracellular glutamate is reduced to near zero, cystine hardly enters the cell, and likewise the release of glutamate from the cell ceases when cystine is absent in the medium. Homocysteate and alpha-aminoadipate share this transport system and, when added, similarly participate in the transport process. Since the intracellular pool of cystine is negligibly small whereas that of glutamate is very large, the physiologic flows via this system are the entry of cystine and the exodus of glutamate coupled together. Measurements of the rate of uptake of cystine into the cells and the rate of release of glutamate from the cells indicate that the entry of cystine and the exodus of glutamate occur at a ratio close to 1:1. Since cystine is known to behave as an anionic form in this transport, it is concluded that the transport system for cystine and glutamate in plasma membrane of human fibroblasts is a kind of an anion-exchanging agency.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources