Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May 1:9:27.
doi: 10.1186/s13099-017-0177-x. eCollection 2017.

Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages

Affiliations

Capsular polysaccharide inhibits adhesion of Bifidobacterium longum 105-A to enterocyte-like Caco-2 cells and phagocytosis by macrophages

Amin Tahoun et al. Gut Pathog. .

Abstract

Background: Bifidobacterium longum 105-A produces markedly high amounts of capsular polysaccharides (CPS) and exopolysaccharides (EPS) that should play distinct roles in bacterial-host interactions. To identify the biological function of B. longum 105-A CPS/EPS, we carried out an informatics survey of the genome and identified the EPS-encoding genetic locus of B. longum 105-A that is responsible for the production of CPS/EPS. The role of CPS/EPS in the adaptation to gut tract environment and bacteria-gut cell interactions was investigated using the ΔcpsD mutant.

Results: A putative B. longum 105-A CPS/EPS gene cluster was shown to consist of 24 putative genes encoding a priming glycosyltransferase (cpsD), 7 glycosyltransferases, 4 CPS/EPS synthesis machinery proteins, and 3 dTDP-L-rhamnose synthesis enzymes. These enzymes should form a complex system that is involved in the biogenesis of CPS and/or EPS. To confirm this, we constructed a knockout mutant (ΔcpsD) by a double cross-over homologous recombination. Compared to wild-type, the ∆cpsD mutant showed a similar growth rate. However, it showed quicker sedimentation and formation of cell clusters in liquid culture. EPS was secreted by the ∆cpsD mutant, but had altered monosaccharide composition and molecular weight. Comparison of the morphology of B. longum 105-A wild-type and ∆cpsD by negative staining in light and electron microscopy revealed that the formation of fimbriae is drastically enhanced in the ∆cpsD mutant while the B. longum 105-A wild-type was coated by a thick capsule. The fimbriae expression in the ∆cpsD was closely associated with the disappearance of the CPS layer. The wild-type showed low pH tolerance, adaptation, and bile salt tolerance, but the ∆cpsD mutant had lost this survivability in gastric and duodenal environments. The ∆cpsD mutant was extensively able to bind to the human colon carcinoma Caco-2 cell line and was phagocytosed by murine macrophage RAW 264.7, whereas the wild-type did not bind to epithelial cells and totally resisted internalization by macrophages.

Conclusions: Our results suggest that CPS/EPS production and fimbriae formation are negatively correlated and play key roles in the survival, attachment, and colonization of B. longum 105-A in the gut.

Keywords: Bifidobacterium longum 105-A; Caco-2 cell line; Capsular polysaccharides; Cell adhesion; Phagocytosis; RAW 264.7.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
CPS/EPS gene cluster of B. longum 105-A. The gene cluster from BL105A_0403 to BL105A_0427, which located nucleotide number 476,499–509,716, in genome sequence (AP014658) was shown. The enzyme and gene names, annotated by blast homology search (Table 1), were indicated. Putative operons, eps1-4, were shown with arrows
Fig. 2
Fig. 2
Light microscope images of B. longum 105-A and ∆cpsD mutant. India ink staining, the polysaccharide capsule appears as a clear halo around the microorganism in the wild-type B. longum 105-A (a), while this layer not present in its ∆cpsD mutant (b). TEM images with negative staining. Wild-type expressing ca. 0.2-µm-thick CPS layer (c, and white arrow), while the mutant did not possess the CPS but expressing long and dense fimbriae (d, and black arrow). White bars 0.2 µm
Fig. 3
Fig. 3
qPCR to confirm the deletion of cpsD and its influence on downstream genes. Relative expression of wild-type B. longum 105-A (white) against B. longum 105-A ∆cpsD (black) of BL105A_0405 (cpsD), BL105A_0406, BL105A_0408, BL105A_0414, and BL105A_0424 (as indicated numbers) were analyzed by qPCR using the 2 −∆∆CT method. The rnaP gene was used as housekeeping control to normalize the data. In comparison to the wild-type B. longum 105-A, the expression of BL105A_0405 (cpsD) gene was undetectable in the ΔcpsD mutant. The downstream gene BL105A_0406, was significantly decreased by approximately 0.46% (P < 0.001) in the ΔcpsD mutant. The expression of genes, BL105A_0408, BL105A_0414, and BL105A_0424, were also decreased to 20% (P < 0.01). Temporal operon name also indicated below. ND not detected
Fig. 4
Fig. 4
Effects CPS on the bacterial resistance to bile salts and acid. a Survival rate of B. longum 105-A (white) and B. longum 105-A ∆cpsD (black) in MRS broth, which is adjusted to indicated pH. b Adaptation by low pH. Cells were pre-incubated at 37 °C, for 2 h in MRS (pH 6.5; white) or pH 4.5 (black), then transferred to the same medium but pH 3.5 incubate for 2 h. B. longum 105-A (left) and B. longum 105-A ∆cpsD (right). c Survival rate of B. longum 105-A (white) and B. longum 105-A ∆cpsD (black) in MRS broth contained bile acid, 0–0.3% (w/v)
Fig. 5
Fig. 5
Bifidobacterium longum 105-A adherence to Caco-2 cells and phagocytosis by murine macrophage. 70% confluent monolayers of Caco-2 cells were challenged with B. longum 105-A (a) and its ∆cpsD mutant (b) at MOI = 100, then determined by phase contrast microscopy. No adherent bacterial cell was observed in the wild-type (a) but a lot of adherent bacteria were observed in ∆cpsD mutant (b). The number of attached ∆cpsD cells per Caco-2 cell was 7.8 ± 2.3 (nucleus ± SD). Three slides for each bacterial strain and at least 20 fields per slide were counted. B. longum 105-A phagocytosis by murine macrophage. Semi-confluent RAW 264.7 murine macrophage was challenged with B. longum 105-A (c) and its ∆cpsD mutant (d) for 30 min. Then, the medium was removed and the cells were washed 5 times with PBS and replace to DMEM containing gentamycin (100 µg/ml) and incubate for another 1 h. The coverslips were then washed 3 times with PBS and the cells were fixed with methanol and stained with Giemsa stain. In the wild-type, no bacterial cell was observed both inside and outside of macrophage cell (c) but ∆cpsD mutant was internalized into Raw 264.7 murine macrophage cells (d). The number of internalized bacterial ce1ls per macrophage cell was 4.1 ± 1

Similar articles

Cited by

References

    1. Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharmacol Res. 2013;69:75–86. doi: 10.1016/j.phrs.2012.09.008. - DOI - PubMed
    1. Scholtens PAMJ, Oozeer R, Martin R, Amor K Ben, Knol J. The early settlers: Intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012;3:425–47. http://www.annualreviews.org/doi/abs/10.1146/annurev-food-022811-101120. - DOI - PubMed
    1. Lane JA, Mehra RK, Carrington SD, Hickey RM. The food glycome: a source of protection against pathogen colonization in the gastrointestinal tract. Int J Food Microbiol. 2010;142:1–13. doi: 10.1016/j.ijfoodmicro.2010.05.027. - DOI - PubMed
    1. Mitsuoka T. Establishment of intestinal bacteriology. Biosci Microbiota Food Health. 2014;33:99–116. doi: 10.12938/bmfh.33.99. - DOI - PMC - PubMed
    1. Jandhyala SM. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787. doi: 10.3748/wjg.v21.i29.8787. - DOI - PMC - PubMed