Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr 18;19(3):505-520.
doi: 10.1016/j.celrep.2017.03.057.

miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock

Affiliations

miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock

Lucia Mendoza-Viveros et al. Cell Rep. .

Abstract

The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.

Keywords: MeCP2; circadian rhythms; dendritic morphology; entrainment; miR-132/212; microRNA; seasonal timekeeping; spinogenesis; structural plasticity; suprachiasmatic nucleus.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–978. - PubMed
    1. Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–1569. - PubMed
    1. Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. - PubMed
    1. Maywood ES, Reddy AB, Wong GKY, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol. 2006;16(6):599–605. - PubMed
    1. Buijs RM, Hou YX, Shinn S, et al. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol. 1994;340(3):381–391. - PubMed

MeSH terms

LinkOut - more resources