miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock
- PMID: 28423315
- PMCID: PMC5864111
- DOI: 10.1016/j.celrep.2017.03.057
miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock
Abstract
The central circadian pacemaker, the suprachiasmatic nucleus (SCN), encodes day length information by mechanisms that are not well understood. Here, we report that genetic ablation of miR-132/212 alters entrainment to different day lengths and non-24 hr day-night cycles, as well as photoperiodic regulation of Period2 expression in the SCN. SCN neurons from miR-132/212-deficient mice have significantly reduced dendritic spine density, along with altered methyl CpG-binding protein (MeCP2) rhythms. In Syrian hamsters, a model seasonal rodent, day length regulates spine density on SCN neurons in a melatonin-independent manner, as well as expression of miR-132, miR-212, and their direct target, MeCP2. Genetic disruption of Mecp2 fully restores the level of dendritic spines of miR-132/212-deficient SCN neurons. Our results reveal that, by regulating the dendritic structure of SCN neurons through a MeCP2-dependent mechanism, miR-132/212 affects the capacity of the SCN to encode seasonal time.
Keywords: MeCP2; circadian rhythms; dendritic morphology; entrainment; miR-132/212; microRNA; seasonal timekeeping; spinogenesis; structural plasticity; suprachiasmatic nucleus.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflict of interest.
Similar articles
-
Commentary: miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.J Neurol Neuromedicine. 2018;3(1):21-25. doi: 10.29245/2572.942X/2017/1.1169. Epub 2018 Feb 27. J Neurol Neuromedicine. 2018. PMID: 29682634 Free PMC article.
-
miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock.Hum Mol Genet. 2011 Feb 15;20(4):731-51. doi: 10.1093/hmg/ddq519. Epub 2010 Nov 30. Hum Mol Genet. 2011. PMID: 21118894 Free PMC article.
-
Time-of-day- and light-dependent expression of ubiquitin protein ligase E3 component N-recognin 4 (UBR4) in the suprachiasmatic nucleus circadian clock.PLoS One. 2014 Aug 1;9(8):e103103. doi: 10.1371/journal.pone.0103103. eCollection 2014. PLoS One. 2014. PMID: 25084275 Free PMC article.
-
Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.Eur J Neurosci. 2010 Dec;32(12):2143-51. doi: 10.1111/j.1460-9568.2010.07522.x. Eur J Neurosci. 2010. PMID: 21143668 Review.
-
The suprachiasmatic nuclei as a seasonal clock.Front Neuroendocrinol. 2015 Apr;37:29-42. doi: 10.1016/j.yfrne.2014.11.002. Epub 2014 Nov 20. Front Neuroendocrinol. 2015. PMID: 25451984 Review.
Cited by
-
miRNA-10a-5p Alleviates Insulin Resistance and Maintains Diurnal Patterns of Triglycerides and Gut Microbiota in High-Fat Diet-Fed Mice.Mediators Inflamm. 2020 Aug 17;2020:8192187. doi: 10.1155/2020/8192187. eCollection 2020. Mediators Inflamm. 2020. PMID: 32879620 Free PMC article.
-
The microRNA/TET3/REST axis is required for olfactory globose basal cell proliferation and male behavior.EMBO Rep. 2020 Sep 3;21(9):e49431. doi: 10.15252/embr.201949431. Epub 2020 Jul 17. EMBO Rep. 2020. PMID: 32677323 Free PMC article.
-
Adult Neurogenesis under Control of the Circadian System.Cells. 2022 Feb 22;11(5):764. doi: 10.3390/cells11050764. Cells. 2022. PMID: 35269386 Free PMC article. Review.
-
Early rhythmicity in the fetal suprachiasmatic nuclei in response to maternal signals detected by omics approach.PLoS Biol. 2022 May 24;20(5):e3001637. doi: 10.1371/journal.pbio.3001637. eCollection 2022 May. PLoS Biol. 2022. PMID: 35609026 Free PMC article.
-
Metazoan MicroRNAs.Cell. 2018 Mar 22;173(1):20-51. doi: 10.1016/j.cell.2018.03.006. Cell. 2018. PMID: 29570994 Free PMC article. Review.
References
-
- Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–978. - PubMed
-
- Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–1569. - PubMed
-
- Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. - PubMed
-
- Maywood ES, Reddy AB, Wong GKY, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol. 2006;16(6):599–605. - PubMed
-
- Buijs RM, Hou YX, Shinn S, et al. Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol. 1994;340(3):381–391. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases