Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May 20;53(4):555-66.
doi: 10.1016/0092-8674(88)90572-7.

cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae

Affiliations

cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae

S Cameron et al. Cell. .

Abstract

Genes encoding the regulatory (BCY1) and catalytic (TPK1, TPK2, and TPK3) subunits of the cAMP-dependent protein kinase (cAPK) are found in S. cerevisiae. bcy1- yeast strains do not respond properly to nutrient conditions. Unlike wild type, bcy1- strains do not accumulate glycogen, form spores, or become resistant to heat shock when nutrient limited. We have isolated mutant TPK genes that suppress all of the bcy1- defects. The mutant TPK genes appear to encode functionally attenuated catalytic subunits of the cAPK. bcy1- yeast strains containing the mutant TPK genes respond appropriately to nutrient conditions, even in the absence of CDC25, both RAS genes, or CYR1. Together, these genes encode the known components of the cAMP-generating machinery. The results indicate that cAMP-independent mechanisms must exist for regulating glycogen accumulation, sporulation, and the acquisition of thermotolerance in S. cerevisiae.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources