Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
- PMID: 28263960
- DOI: 10.1038/nmeth.4207
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
Abstract
We present single-cell interpretation via multikernel learning (SIMLR), an analytic framework and software which learns a similarity measure from single-cell RNA-seq data in order to perform dimension reduction, clustering and visualization. On seven published data sets, we benchmark SIMLR against state-of-the-art methods. We show that SIMLR is scalable and greatly enhances clustering performance while improving the visualization and interpretability of single-cell sequencing data.
Similar articles
-
SIMLR: A Tool for Large-Scale Genomic Analyses by Multi-Kernel Learning.Proteomics. 2018 Jan;18(2). doi: 10.1002/pmic.201700232. Proteomics. 2018. PMID: 29265724
-
Single-Cell RNA Sequencing Data Interpretation by Evolutionary Multiobjective Clustering.IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1773-1784. doi: 10.1109/TCBB.2019.2906601. Epub 2019 Mar 25. IEEE/ACM Trans Comput Biol Bioinform. 2020. PMID: 30908236
-
Visualization of Single Cell RNA-Seq Data Using t-SNE in R.Methods Mol Biol. 2020;2117:159-167. doi: 10.1007/978-1-0716-0301-7_8. Methods Mol Biol. 2020. PMID: 31960377
-
Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.Comput Biol Med. 2022 Jul;146:105697. doi: 10.1016/j.compbiomed.2022.105697. Epub 2022 Jun 8. Comput Biol Med. 2022. PMID: 35697529 Review.
-
Clustering and classification methods for single-cell RNA-sequencing data.Brief Bioinform. 2020 Jul 15;21(4):1196-1208. doi: 10.1093/bib/bbz062. Brief Bioinform. 2020. PMID: 31271412 Free PMC article. Review.
Cited by
-
Demystifying "drop-outs" in single-cell UMI data.Genome Biol. 2020 Aug 6;21(1):196. doi: 10.1186/s13059-020-02096-y. Genome Biol. 2020. PMID: 32762710 Free PMC article.
-
Scalable nonparametric clustering with unified marker gene selection for single-cell RNA-seq data.bioRxiv [Preprint]. 2024 Feb 12:2024.02.11.579839. doi: 10.1101/2024.02.11.579839. bioRxiv. 2024. PMID: 38405697 Free PMC article. Preprint.
-
Quantitative assessment of cell population diversity in single-cell landscapes.PLoS Biol. 2018 Oct 22;16(10):e2006687. doi: 10.1371/journal.pbio.2006687. eCollection 2018 Oct. PLoS Biol. 2018. PMID: 30346945 Free PMC article.
-
Visualizing and Interpreting Single-Cell Gene Expression Datasets with Similarity Weighted Nonnegative Embedding.Cell Syst. 2018 Dec 26;7(6):656-666.e4. doi: 10.1016/j.cels.2018.10.015. Epub 2018 Dec 5. Cell Syst. 2018. PMID: 30528274 Free PMC article.
-
Challenges in unsupervised clustering of single-cell RNA-seq data.Nat Rev Genet. 2019 May;20(5):273-282. doi: 10.1038/s41576-018-0088-9. Nat Rev Genet. 2019. PMID: 30617341 Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources