Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr:113:187-197.
doi: 10.1016/j.plaphy.2017.02.007. Epub 2017 Feb 10.

A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida

Affiliations

A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida

Guiyan Yang et al. Plant Physiol Biochem. 2017 Apr.

Abstract

Dehydration-responsive element-binding (DREB) transcription factors are important abiotic stress tolerance related genes, and some reports on the roles of DREB have primarily addressed herbal plants. To explore the abiotic stress tolerance role of DREB (ThDREB) from Tamarix hispida, a ThDREB gene with a complete ORF of 783 bp that encodes a 28.74 kDa protein with 260 amino acids, was isolated and functionally annotated. ThDREB expression was highly induced by NaCl, PEG, NaHCO3 and CdCl2 treatments, and the highest expression level (369.2-fold of control) was found for the roots that were under NaCl stress for 6 h. The tobacco plants that were transformed by ThDREB were conferred with higher germination rates, fresh weights and root lengths than the wild type (WT) tobacco plants under NaCl and mannitol treatments. The total chlorophyll content (tcc), superoxide dismutase (SOD) and peroxidase (POD) activities were also higher in the transgenic lines in comparison with the WT, and the malondialdehyde (MDA) and H2O2 content, electrolyte leakage (EL) rate and ROS as tracked by staining were generated to a lesser degree in ThDREB transgenic plants than in the WT under NaCl and mannitol stress. Furthermore, the transient overexpression analysis of ThDREB in T. hispida also improved plant salt and drought tolerance in comparison with the empty vector-transformed lines. Our results indicated that ThDREB expression could effectively improve tolerance to salt and drought stress by enhancing the antioxidase activity that keeps the ROS at a low accumulation level and makes them easy to scavenge.

Keywords: Abiotic stress; DREB; ROS metabolism; Salt and drought tolerance; Tamarix hispida.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources