Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Sep 2;4(3):29.
doi: 10.3390/vaccines4030029.

Monitoring of the Immune Dysfunction in Cancer Patients

Affiliations
Review

Monitoring of the Immune Dysfunction in Cancer Patients

Saskia J A M Santegoets et al. Vaccines (Basel). .

Abstract

Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction is a prerequisite for the development of strategies aiming to alleviate cancer-induced immune suppression. At this point, the level at which immune dysfunction occurs has to be established, the underlying mechanism(s) need to be known, as well as the techniques to assess this. While it is relatively easy to measure general signs of immune suppression, it turns out that accurate monitoring of the frequency and function of immune-suppressive cells is still difficult. A lack of truly specific markers, the phenotypic complexity among suppressive cells of the same lineage, but potentially with different functions and functional assays that may not cover every mechanistic aspect of immune suppression are among the reasons complicating proper assessments. Technical innovations in flow and mass cytometry will allow for more complete sets of markers to precisely determine phenotype and associated function. There is, however, a clear need for functional assays that recapitulate more of the mechanisms employed to suppress the immune system.

Keywords: anti-tumor response; functional assays; immune dysfunction; immunomonitoring; immunosuppression; myeloid-derived suppressor cells; phenotyping; regulatory T cells; tumor-associated macrophages; tumor-associated neutrophils.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview and measurement of the different levels of immune dysfunction present in cancer patients. Immune dysfunction can be analyzed through measuring general signs of immune suppression in the blood (top left) and through measuring the frequency and function of suppressor cells in the blood and tumor tissue (bottom left). The different parameters that can be measured studying these levels of immune dysfunction are depicted (middle), as well as the techniques that can be used (right). Abbreviations used: APC: antigen-presenting cell; Arg1: arginase 1; CBC: complete blood count; CMV: cytomegalovirus; DBC: differential blood count; EBV: Epstein-Barr virus; GARP: glycoprotein A repetitions predominant; ICS: intracellular cytokine staining; IDO: indoleamine-2,3-deoxigenase; IHC: immunohistochemistry; iNOS: inducible nitric oxide synthase; MDSC: myeloid-derived suppressor cells; MLR: mixed lymphocyte reaction; NK: natural killer; NO: nitric oxide; PBMC: peripheral blood mononuclear cells; PHA: phytohemagglutinin; qPCR: quantitative polymerase chain reaction; ROS: reactive oxygen species; SEB: staphylococcal enterotoxin B; TAA: tumor-associated antigen; TAM: tumor-associated macrophages; TAN: tumor-associated neutrophils; TGF-β: transforming growth factor receptor-β; Treg: regulatory T cells.

Similar articles

Cited by

References

    1. Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466. - DOI - PMC - PubMed
    1. Robert C., Thomas L., Bondarenko I., O’Day S., Weber J., Garbe C., Lebbe C., Baurain J.F., Testori A., Grob J.J., et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 2011;364:2517–2526. doi: 10.1056/NEJMoa1104621. - DOI - PubMed
    1. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., et al. Safety, activity, and immune correlates of anti-pd-1 antibody in cancer. N. Engl. J. Med. 2012;366:2443–2454. doi: 10.1056/NEJMoa1200690. - DOI - PMC - PubMed
    1. Wolchok J.D., Kluger H., Callahan M.K., Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R.A., Reed K., et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013;369:122–133. doi: 10.1056/NEJMoa1302369. - DOI - PMC - PubMed
    1. Garon E.B., Rizvi N.A., Hui R., Leighl N., Balmanoukian A.S., Eder J.P., Patnaik A., Aggarwal C., Gubens M., Horn L., et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015;372:2018–2028. doi: 10.1056/NEJMoa1501824. - DOI - PubMed

LinkOut - more resources