Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan;123(1):96-100.
doi: 10.1016/j.jbiosc.2016.07.015. Epub 2016 Aug 8.

Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis

Affiliations

Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis

Tran Thi My Duyen et al. J Biosci Bioeng. 2017 Jan.

Abstract

Due to the presence of antibiotics in environmental water and their potential influence on the occurrence of antibiotic-resistant bacteria, development of a detection method suitable for the screening of environmental water for antibiotics is required. In this study, we developed a simple colorimetric paper-based biosensor based on a novel principle for the detection of antibiotics inhibiting bacterial protein synthesis, including aminoglycosides, tetracycline, chloramphenicol, and macrolides. This biosensor is based on the detection of a color change induced by β-galactosidase, which is synthesized on freeze-dried paper discs containing an in vitro transcription/translation system. When a water sample without antibiotics is applied to the paper discs, β-galactosidase can be synthesized, and it hydrolyzes a colorimetric substrate, resulting in a color change from yellow to purple. By contrast, in the presence of antibiotics, the color change can be hampered due to an inhibition of β-galactosidase synthesis. We investigated the effect of the incubation temperature and pH of water samples and confirmed that the paper discs showed the color change to purple in the ranges of 15-37°C and pH 6-10. We observed concentration-dependent color variations of the paper discs by the naked eye and further estimated detection limits to be 0.5, 2.1, 0.8, and 6.1 μg/mL for paromomycin, tetracycline, chloramphenicol, and erythromycin, respectively, using digitized pictures. The paper-based biosensor proved to detect 0.5 μg/mL paromomycin, spiked in real environmental water samples, by the naked eye.

Keywords: Cell-free protein synthesis; Chloramphenicol; Chlorophenol red-β-d-galactopyranoside; Environmental water; Erythromycin; Paper-based biosensor; Paromomycin; Resistant bacteria; Tetracycline; β-Galactosidase.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms