Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 9;24(2):295-310.
doi: 10.1016/j.cmet.2016.07.009.

Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner

Affiliations
Free article

Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner

Yoshinaga Kawano et al. Cell Metab. .
Free article

Abstract

High-fat diet (HFD) induces low-grade chronic inflammation and insulin resistance. However, little is known about the mechanism underlying HFD-induced chronic inflammation in peripheral insulin-responsive tissues. Here, we show that colonic pro-inflammatory macrophages regulate insulin sensitivity under HFD conditions. To investigate the pathophysiological role of colonic macrophages, we generated macrophage-specific chemokine (C-C Motif) receptor 2 (Ccr2) knockout (M-Ccr2KO) and intestinal epithelial cell-specific tamoxifen-inducible Ccl2 knockout (Vil-Ccl2KO) mice. Both strains exhibited similar body weight to control under HFD. However, they exhibited decreased infiltration of colonic pro-inflammatory macrophages, decreased intestinal permeability, and inactivation of the colonic inflammasome. Interestingly, they showed significantly improved glucose tolerance and insulin sensitivity with decreased chronic inflammation of adipose tissue. Therefore, inhibition of pro-inflammatory macrophage infiltration prevents HFD-induced insulin resistance and could be a novel therapeutic approach for type 2 diabetes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources