Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov;39(11):1896-1901.
doi: 10.2337/dc16-0706. Epub 2016 Aug 4.

Effect of Serotonin Transporter 5-HTTLPR Polymorphism on Gastrointestinal Intolerance to Metformin: A GoDARTS Study

Affiliations

Effect of Serotonin Transporter 5-HTTLPR Polymorphism on Gastrointestinal Intolerance to Metformin: A GoDARTS Study

Tanja Dujic et al. Diabetes Care. 2016 Nov.

Abstract

Objective: The mechanism causing gastrointestinal intolerance to metformin treatment is unknown. We have previously shown that reduced-function alleles of organic cation transporter 1 (OCT1) are associated with increased intolerance to metformin. Considering recent findings that serotonin reuptake transporter (SERT) might also be involved in metformin intestinal absorption, and the role of serotonin in gastrointestinal physiology, in this study we investigated the association between a common polymorphism in the SERT gene and metformin gastrointestinal intolerance.

Research design and methods: We explored the effect of composite SERT 5-HTTLPR/rs25531 genotypes, L*L* (LALA), L*S* (LALG, LAS), and S*S* (SS, SLG, LGLG), in 1,356 fully tolerant and 164 extreme metformin-intolerant patients by using a logistic regression model, adjusted for age, sex, weight, OCT1 genotype, and concomitant use of medications known to inhibit OCT1 activity.

Results: The number of low-expressing SERT S* alleles increased the odds of metformin intolerance (odds ratio [OR] 1.31 [95% CI 1.02-1.67], P = 0.031). Moreover, a multiplicative interaction between the OCT1 and SERT genotypes was observed (P = 0.003). In the analyses stratified by SERT genotype, the presence of two deficient OCT1 alleles was associated with more than a ninefold higher odds of metformin intolerance in patients carrying the L*L* genotype (OR 9.25 [95% CI 3.18-27.0], P < 10-4); however, it showed a much smaller effect in L*S* carriers and no effect in S*S* carriers.

Conclusions: Our results indicate that the interaction between OCT1 and SERT genes might play an important role in metformin intolerance. Further studies are needed to replicate these findings and to substantiate the hypothesis that metformin gastrointestinal side effects could be related to the reduced intestinal serotonin uptake.

PubMed Disclaimer

Conflict of interest statement

Duality of Interest. We declare no conflict of interest.

Figures

Figure 1
Figure 1. Joint effects of OCT1 and SERT genotypes on metformin intolerance.
The combination one or no deficient OCT1 alleles/ L*L* is used as a reference group. The numbers in each genotype group are presented for the intolerant and tolerant individuals as ‘Intolerant/Tolerant’.

Similar articles

Cited by

References

    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38:140–149. - PubMed
    1. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999;131:281–303. - PubMed
    1. Cubeddu LX, Bonisch H, Gothert M, Molderings G, Racke K, Ramadori G, Miller KJ, Schworer H. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;361:85–91. - PubMed
    1. Carter D, Howlett HC, Wiernsperger NF, Bailey CJ. Differential effects of metformin on bile salt absorption from the jejunum and ileum. Diabetes Obes Metab. 2003;5:120–125. - PubMed
    1. Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001;24:489–494. - PubMed