Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;201(2):378-87.
doi: 10.1016/j.jss.2015.11.045. Epub 2015 Nov 30.

Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects

Affiliations
Free article

Efficacy of gelatin gel sheets in sustaining the release of basic fibroblast growth factor for murine skin defects

Michiharu Sakamoto et al. J Surg Res. 2016 Apr.
Free article

Abstract

Background: Gelatin has been used as a material sustaining the release of basic fibroblast growth factor (bFGF), which promotes fibroblast proliferation and capillary formation and accelerates wound healing. In the application of these materials, bFGF is impregnated immediately before application, and it is difficult to conform the shape to the wound. In this study, we prepared a pliable and plastic gelatin gel sheet (GGS) that sustains bFGF and conforms to the shape of the wound as a result of cross-linking just before application. In addition, we examined the sustained release profile of bFGF from GGS and its effect on wound healing in murine skin defects.

Materials and methods: A 13-wt% gelatin solution was mixed with bFGF before cross-linking with 1% glutaraldehyde solution. GGSs impregnated with 7 μg/cm(2) of bFGF were incubated in phosphate-buffered saline and collagenase solution, and GGS degradation and bFGF release were evaluated. In the murine experiments, GGSs treated without bFGF and GGSs impregnated with 1, 3.5, 7, or 14 μg/cm(2) of bFGF were applied to full-thickness skin defects created on the backs of C57BL/6JJcl mice, and the wound closure, epithelial length, extent of granulation tissue and capillary formation were compared.

Results: bFGF was released according to the degradation of GGS in phosphate-buffered saline, and the remaining bFGF was released in collagenase solution. In the animal studies, epithelialization was accelerated in the GGSs treated with 1 and 3.5 μg/cm(2) of bFGF, and granulation tissue formation and angiogenesis were promoted based on the amount of bFGF impregnated into the GGS.

Conclusions: GGS impregnated with bFGF is capable of sustaining the release of bFGF, with consequent accelerated epithelialization, granulation tissue formation, and angiogenesis in vivo. GGS is a novel and promising wound dressing that sustains bFGF and can be adapted to the shape of various wounds in the treatment of both acute and chronic wounds.

Keywords: Basic fibroblast growth factor; Cutometer; Gelatin gel; Murine model; Sustained release; Wound healing.

PubMed Disclaimer

Similar articles

Cited by