Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq
- PMID: 26689543
- PMCID: PMC4840019
- DOI: 10.1038/nbt.3445
Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq
Abstract
Despite the importance of the mammalian neocortex for complex cognitive processes, we still lack a comprehensive description of its cellular components. To improve the classification of neuronal cell types and the functional characterization of single neurons, we present Patch-seq, a method that combines whole-cell electrophysiological patch-clamp recordings, single-cell RNA-sequencing and morphological characterization. Following electrophysiological characterization, cell contents are aspirated through the patch-clamp pipette and prepared for RNA-sequencing. Using this approach, we generate electrophysiological and molecular profiles of 58 neocortical cells and show that gene expression patterns can be used to infer the morphological and physiological properties such as axonal arborization and action potential amplitude of individual neurons. Our results shed light on the molecular underpinnings of neuronal diversity and suggest that Patch-seq can facilitate the classification of cell types in the nervous system.
Conflict of interest statement
The authors declare competing financial interests: details are available in the online version of the paper.
Figures
Similar articles
-
Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq.Nat Protoc. 2017 Dec;12(12):2531-2553. doi: 10.1038/nprot.2017.120. Epub 2017 Nov 16. Nat Protoc. 2017. PMID: 29189773 Free PMC article.
-
Q&A: using Patch-seq to profile single cells.BMC Biol. 2017 Jul 6;15(1):58. doi: 10.1186/s12915-017-0396-0. BMC Biol. 2017. PMID: 28679385 Free PMC article.
-
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.Nat Biotechnol. 2016 Feb;34(2):175-183. doi: 10.1038/nbt.3443. Epub 2015 Dec 21. Nat Biotechnol. 2016. PMID: 26689544 Free PMC article.
-
Patch-seq: Past, Present, and Future.J Neurosci. 2021 Feb 3;41(5):937-946. doi: 10.1523/JNEUROSCI.1653-20.2020. Epub 2021 Jan 11. J Neurosci. 2021. PMID: 33431632 Free PMC article. Review.
-
Electrophysiological and gene expression profiling of neuronal cell types in mammalian neocortex.J Physiol. 2006 Sep 1;575(Pt 2):361-5. doi: 10.1113/jphysiol.2006.113712. Epub 2006 Jul 13. J Physiol. 2006. PMID: 16840515 Free PMC article. Review.
Cited by
-
The Neuroscience Multi-Omic Archive: a BRAIN Initiative resource for single-cell transcriptomic and epigenomic data from the mammalian brain.Nucleic Acids Res. 2023 Jan 6;51(D1):D1075-D1085. doi: 10.1093/nar/gkac962. Nucleic Acids Res. 2023. PMID: 36318260 Free PMC article.
-
Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development.Sci Adv. 2020 Aug 21;6(34):eaaz2978. doi: 10.1126/sciadv.aaz2978. eCollection 2020 Aug. Sci Adv. 2020. PMID: 32923614 Free PMC article.
-
High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy.Nat Commun. 2024 Jul 27;15(1):6337. doi: 10.1038/s41467-024-50728-9. Nat Commun. 2024. PMID: 39068160 Free PMC article.
-
Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area.Elife. 2020 Aug 4;9:e59328. doi: 10.7554/eLife.59328. Elife. 2020. PMID: 32749220 Free PMC article.
-
Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing.Nat Methods. 2023 Apr;20(4):590-599. doi: 10.1038/s41592-023-01804-3. Epub 2023 Mar 16. Nat Methods. 2023. PMID: 36928074
References
-
- Cajal SR, Pasik P, Pasik T. Texture of the Nervous System of Man and the Vertebrates. Springer; 2002.
-
- Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990;13:99–104. - PubMed
Publication types
MeSH terms
Grants and funding
- T32EY07001/EY/NEI NIH HHS/United States
- R01MH103108/MH/NIMH NIH HHS/United States
- R01NS062829/NS/NINDS NIH HHS/United States
- F30 MH095440/MH/NIMH NIH HHS/United States
- R01 MH103108/MH/NIMH NIH HHS/United States
- F30MH095440/MH/NIMH NIH HHS/United States
- DP1 OD008301/OD/NIH HHS/United States
- DP1EY023176/DP/NCCDPHP CDC HHS/United States
- T32 EY007001/EY/NEI NIH HHS/United States
- T32GM007330/GM/NIGMS NIH HHS/United States
- T32EB006350/EB/NIBIB NIH HHS/United States
- R01 NS062829/NS/NINDS NIH HHS/United States
- P30 EY002520/EY/NEI NIH HHS/United States
- T32 EB006350/EB/NIBIB NIH HHS/United States
- P30EY002520/EY/NEI NIH HHS/United States
- T32 GM007330/GM/NIGMS NIH HHS/United States
- DP1 EY023176/EY/NEI NIH HHS/United States
- DP1OD008301/OD/NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases