Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Dec 1:6:286.
doi: 10.3389/fphar.2015.00286. eCollection 2015.

Advances and Challenges of Liposome Assisted Drug Delivery

Affiliations
Review

Advances and Challenges of Liposome Assisted Drug Delivery

Lisa Sercombe et al. Front Pharmacol. .

Abstract

The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

Keywords: accelerated blood clearance; biological challenges; complement activation–related pseudoallergy; drug delivery; lipid-based drug delivery system; liposomes; nanotechnology; translation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of the different types of liposomal drug delivery systems. (A) Conventional liposome—Liposomes consist of a lipid bilayer that can be composed of cationic, anionic, or neutral (phospho)lipids and cholesterol, which encloses an aqueous core. Both the lipid bilayer and the aqueous space can incorporate hydrophobic or hydrophilic compounds, respectively. (B) PEGylated liposome—Liposome characteristics and behavior in vivo can be modified by addition of a hydrophilic polymer coating, polyethylene glycol (PEG), to the liposome surface to confer steric stabilization. (C) Ligand-targeted liposome—Liposomes can be used for specific targeting by attaching ligands (e.g., antibodies, peptides, and carbohydrates) to its surface or to the terminal end of the attached PEG chains. (D) Theranostic liposome—A single system consist of a nanoparticle, a targeting element, an imaging component, and a therapeutic component.

Similar articles

Cited by

References

    1. Allen T. M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 15, 215–220. 10.1016/0165-6147(94)90314-X - DOI - PubMed
    1. Allen T. M., Cullis P. R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818–1822. 10.1126/science.1095833 - DOI - PubMed
    1. Allen T. M., Cullis P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48. 10.1016/j.addr.2012.09.037 - DOI - PubMed
    1. Andresen T. L., Davidsen J., Begtrup M., Mouritsen O. G., Jørgensen K. (2004). Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem. 47, 1694–1703. 10.1021/jm031029r - DOI - PubMed
    1. Antohe F., Lin L., Kao G. Y., Poznansky M. J., Allen T. M. (2004). Transendothelial movement of liposomes in vitro mediated by cancer cells, neutrophils or histamine. J. Liposome Res. 14, 1–25. 10.1081/LPR-120039660 - DOI - PubMed