Mitochondrial dynamics, mitophagy and cardiovascular disease
- PMID: 26537557
- PMCID: PMC5341713
- DOI: 10.1113/JP271301
Mitochondrial dynamics, mitophagy and cardiovascular disease
Abstract
Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.
© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57de/5341713/3b532fe6b792/TJP-594-509-g002.gif)
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57de/5341713/957a9608bdd5/TJP-594-509-g003.gif)
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57de/5341713/47608babf6e9/TJP-594-509-g004.gif)
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57de/5341713/9b7999670498/TJP-594-509-g005.gif)
Similar articles
-
Emerging role of mitophagy in cardiovascular physiology and pathology.Mol Aspects Med. 2020 Feb;71:100822. doi: 10.1016/j.mam.2019.09.006. Epub 2019 Oct 3. Mol Aspects Med. 2020. PMID: 31587811 Review.
-
Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system.J Mol Cell Cardiol. 2015 Jan;78:116-22. doi: 10.1016/j.yjmcc.2014.09.019. Epub 2014 Oct 7. J Mol Cell Cardiol. 2015. PMID: 25305175 Free PMC article. Review.
-
Molecular regulation of mitochondrial dynamics in cardiac disease.Biochim Biophys Acta Mol Cell Res. 2017 Jul;1864(7):1260-1273. doi: 10.1016/j.bbamcr.2017.03.006. Epub 2017 Mar 22. Biochim Biophys Acta Mol Cell Res. 2017. PMID: 28342806 Review.
-
Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.PLoS One. 2017 Jan 6;12(1):e0168198. doi: 10.1371/journal.pone.0168198. eCollection 2017. PLoS One. 2017. PMID: 28060865 Free PMC article.
-
Mitophagy as a Protective Mechanism against Myocardial Stress.Compr Physiol. 2017 Sep 12;7(4):1407-1424. doi: 10.1002/cphy.c170005. Compr Physiol. 2017. PMID: 28915329 Review.
Cited by
-
The Effects of Exercise Training on Mitochondrial Function in Cardiovascular Diseases: A Systematic Review and Meta-Analysis.Int J Mol Sci. 2022 Oct 19;23(20):12559. doi: 10.3390/ijms232012559. Int J Mol Sci. 2022. PMID: 36293409 Free PMC article. Review.
-
The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy.Front Cell Dev Biol. 2020 Jun 10;8:413. doi: 10.3389/fcell.2020.00413. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32587855 Free PMC article. Review.
-
Proliferation and Maturation: Janus and the Art of Cardiac Tissue Engineering.Circ Res. 2023 Feb 17;132(4):519-540. doi: 10.1161/CIRCRESAHA.122.321770. Epub 2023 Feb 16. Circ Res. 2023. PMID: 36795845 Free PMC article. Review.
-
Mitochondrial Dysfunction and Increased DNA Damage in Vascular Smooth Muscle Cells of Abdominal Aortic Aneurysm (AAA-SMC).Oxid Med Cell Longev. 2023 Jan 25;2023:6237960. doi: 10.1155/2023/6237960. eCollection 2023. Oxid Med Cell Longev. 2023. PMID: 36743698 Free PMC article.
-
TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1.Cell Commun Signal. 2019 Nov 19;17(1):149. doi: 10.1186/s12964-019-0468-6. Cell Commun Signal. 2019. PMID: 31744518 Free PMC article.
References
-
- Abouhamed M, Reichenberg S, Robenek H & Plenz G (2003). Tropomyosin 4 expression is enhanced in dedifferentiating smooth muscle cells in vitro and during atherogenesis. Eur J Cell Biol 82, 473–482. - PubMed
-
- Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M & Tanaka H (1995). Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation 91, 955–961. - PubMed
-
- Ashrafian H , Docherty L, Leo V, Towlson C, Neilan M, Steeples V, Lygate CA, Hough T, Townsend S, Williams D, Wells S, Norris D, Glyn‐Jones S, Land J, Barbaric I, Lalanne Z, Denny P, Szumska D, Bhattacharya S, Griffin JL, Hargreaves I, Fernandez‐Fuentes N, Cheeseman M, Watkins H & Dear TN (2010). A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6, e1001000. - PMC - PubMed
-
- Ballinger SW, Patterson C, Knight‐Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R, Hunter GC, McIntyre K & Runge MS (2002). Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549. - PubMed
-
- Barry SP, Davidson SM & Townsend PA (2008). Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40, 2023–2039. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials