Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 28:16:347.
doi: 10.1186/s12859-015-0778-7.

Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data

Affiliations

Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data

Peipei Li et al. BMC Bioinformatics. .

Abstract

Background: Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a widely used technique to quantify gene expression levels. Various normalization approaches have been proposed, owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed normalization methods is required to generate suitable guidelines for the selection of the most appropriate approach for future experiments.

Results: In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a 76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence, higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we found that adding a poly-A tail increased alignment numbers, but did not improve normalization results.

Conclusion: Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably improve gene expression normalization, regardless of read length. Other normalization methods were more efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during differential gene expression analysis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Li M, Cho SB, Ryu KH. A novel approach for predicting disordered regions in a protein sequence. Osong Public Health Res Perspect. 2014;5(4):211–8. doi: 10.1016/j.phrp.2014.06.006. - DOI - PMC - PubMed
    1. Li P, Pok G, Jung KS, Shon HS, Ryu KH. QSE: A new 3-D solvent exposure measure for the analysis of protein structure. Proteomics. 2011;11(19):3793–801. doi: 10.1002/pmic.201100189. - DOI - PubMed
    1. Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5(1):16–8. doi: 10.1038/nmeth1156. - DOI - PubMed
    1. de Magalhães JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev. 2010;9(3):315–23. doi: 10.1016/j.arr.2009.10.006. - DOI - PMC - PubMed
    1. Church GM. Genomes for all. Sci Am. 2006;294(1):46–54. doi: 10.1038/scientificamerican0106-46. - DOI - PubMed

Publication types