Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb;27(1):29-36.
doi: 10.1097/FBP.0000000000000176.

Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats

Affiliations

Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats

Ivliane Nozadze et al. Behav Pharmacol. 2016 Feb.

Abstract

A sensitive response of the nervous system to changes in temperature is of predominant importance for homeotherms to maintain a stable body temperature. A number of temperature-sensitive transient receptor potential (TRP) ion channels have been studied as nociceptors that respond to extreme temperatures and harmful chemicals. Recent findings in the field of pain have established a family of six thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) that exhibit sensitivity to increases or decreases in temperature, as well as to chemical substances eliciting the respective hot or cold sensations. In this study, we used behavioral methods to investigate whether mustard oil (allyl isothiocyanate) and capsaicin affect the sensitivity to heat, innocuous and noxious cold, and mechanical stimuli in male rats. The results obtained indicate that TRPA1 and TRPV1 channels are clearly involved in pain reactions, and the TRPA1 agonist allyl isothiocyanate enhances the heat pain sensitivity, possibly by indirectly modulating TRPV1 channels coexpressed in nociceptors with TRPA1. Overall, our data support the role of thermosensitive TRPA1 and TRPV1 channels in pain modulation and show that these two thermoreceptor channels are in a synergistic and/or conditional relationship with noxious heat and cold cutaneous stimulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources