Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep;36(3):760-6.
doi: 10.3892/ijmm.2015.2275. Epub 2015 Jul 7.

MicroRNA-153 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type II

Affiliations

MicroRNA-153 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type II

Yujing Cao et al. Int J Mol Med. 2015 Sep.

Abstract

Elucidation of the molecular mechanisms governing the osteogenic differentiation of human mesenchymal stem cells (hMSCs) is of great importance for improving the treatment of bone-related diseases. MicroRNAs (miRNAs or miRs), a class of small non-coding RNAs, are critical in a number of biological processes, including the proliferation, differentiation and survival of cells and organisms. Emerging evidence indicates that miRNAs are essential in regulating osteoblastogenesis and bone formation. However, the role of miRNAs in osteoblast mechanotransduction remains to be defined. The present study aimed to examine the role of miR-153 in the osteogenesis of hMSCs and to investigate the impact of miR-153 on bone morphogenetic protein receptor type II (BMPR2) expression. The overexpression of miR-153 inhibited the osteogenic differentiation of hMSCs, whereas downregulation of miR-153 enhanced the process. Furthermore, bioinformatic analysis predicted that miR-153 is a potential regulator of BMPR2. The direct binding of miR-153 to the BMPR2 3'-untranslated region (3'-UTR) was demonstrated by a luciferase reporter assay using a construct containing the BMPR2 3'-UTR. In addition, knockdown of BMPR2 by RNA interference inhibited the osteogenic differentiation of hMSCs, with a similar effect to the upregulation of miR-153. In conclusion, the results suggest that miR-153 is a mechano-sensitive miRNA that regulates osteoblast differentiation by directly targeting BMPR2, and that therapeutic inhibition of miR-153 may be an efficient anabolic strategy for skeletal disorders caused by pathological mechanical loading.

PubMed Disclaimer

Similar articles

Cited by

Substances