Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jun 10;11(6):e1004325.
doi: 10.1371/journal.pcbi.1004325. eCollection 2015 Jun.

Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

Affiliations

Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

Federico Abascal et al. PLoS Comput Biol. .

Abstract

Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Splice event specific peptides for VDAC3 and DNM1.
A. Pairwise alignment between two variants from the VDAC3 gene, ENST00000022615 and ENST00000521158. The peptides from the eight data sets are mapped onto the alignment, blue when they do not discriminate between the two splice isoforms, red when they do. The two VDAC3 isoforms differ by a single inserted residue. Two peptides mapped uniquely to variant ENST00000022615; one was detected in all eight data sets, the other was a supported missed cleavage and found in three data sets. Variant ENST00000521158 was supported by a single peptide that was identified in four of the data sets. B. The pairwise alignment between two variants from the DNM1 gene, ENST00000341179 and ENST00000393594, a case of mutually exclusive homologous splicing. The peptides identified in the eight data sets are mapped onto the alignment, two peptides supported each splice isoform.
Fig 2
Fig 2. Splice events identified in the mouse and human experiments.
The percentages of each type of splice event in the human analysis (8 protein data sets), the mouse analysis (three data sets) and among those splice events that were common to both analyses. We identified 282 and 68 events in human and mouse respectively and there were 35 splice events in common to both analyses.
Fig 3
Fig 3. Numbers of peptides detected by ISE type.
In A, boxplot of the five most common splice events (C-terminal substitutions, indels, homologous exon substitutions, N-terminal substitutions and NAGNAG-type splice events) showing the median (thick band) number of peptides per gene, the first and third quartiles (the bottom and top of the boxes). In B, genes binned by the number of peptides detected in the human experiments. Distributions are shown for the 157 genes with homologous exon substitutions (HES) that we identified with BLAST and for those genes that are annotated with at least one splice event (All).
Fig 4
Fig 4. Cardiac specific splice isoforms.
A general schema showing the possible location of the heart-specific splice isoforms identified in the Kim data set and their relation to the organization of actin in the thin filaments and Z-discs. Splice isoforms are shown for the following genes: NEBL (nebulette), TPM1 (TPM1alpha), CAPZB (CAPZB1), LDB3 (ZASP6), PDLIM3 (ALP-H), PDLIM5 (ENH1e) and TTN (Titin). The representation also includes alpha actinin 2 (ACTN2) the main component of the Z-discs. ACTN2 is also annotated with homologous exons, but we did not identify peptides for the distinct isoforms. Alternative isoforms implicated in DCM are highlighted in red, while those generated from homologous exons are boxed.
Fig 5
Fig 5. Resolved structures of homologous exons specific splice isoforms.
A. Two isoforms generated from homologous exons for the gene ACP1, superimposed structures in red and cyan, regions generated from homologous exons in orange and cyan and side chains shown as sticks; B. Two isoforms generated from homologous exons for the gene H2AFY, superimposed structures in red and cyan, regions generated from homologous exons in orange and cyan and side chains shown as sticks, the nucleotide substrate is shown In yellow spacefill, the orange residues would clearly clash with the ligand; C. Two isoforms generated from homologous exons for the gene PFN2, superimposed structures in red and cyan, regions generated from homologous exons in orange and cyan and side chains shown as sticks, the proline rich peptide is shown In yellow; the orange residues come from a mouse protein; D. Two isoforms generated from homologous exons for the gene MASP1, superimposed structures in red and cyan; for this gene the whole trypsin domain is generated from homologous exons. All images of protein structures generated using the PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC.
Fig 6
Fig 6. The effect of splice events on Pfam functional domains.
The percentage of splice events that would produce alternative isoforms with a damaged Pfam domain (Broken), that would cause the alternative isoform to lose a whole Pfam domain (Lost) and that would have no effect on the Pfam domain composition of the alternative isoform (No effect). Percentages shown for six sets of events, all events annotated at the transcript level for all protein coding genes in the GENCODE 20 annotation of the human genome (GENCODE 20), all events annotated at the transcript level for all genes identified in the proteomics analysis (Detected), all events annotated at the transcript level for those genes for which we identified at least 20 peptides (Min 20 peptides), all events annotated at the transcript level for those genes for which we identified at least 50 peptides (Min 50 peptides), all the splice events annotated at the transcript level for the 246 genes in which we identified splice events (ISE genes), and the 282 splice events that we identified peptides for from those 246 genes (ISE).

Similar articles

Cited by

References

    1. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40: 1413–1415. 10.1038/ng.259 - DOI - PubMed
    1. Wang E, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456: 470–476. 10.1038/nature07509 - DOI - PMC - PubMed
    1. Smith CW, Valcárcel J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci. 2000;25: 381–388. - PubMed
    1. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010;463,: 457–463. 10.1038/nature08909 - DOI - PMC - PubMed
    1. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22: 760–774. - PMC - PubMed

Publication types

MeSH terms