Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 May 27;10(5):e0125418.
doi: 10.1371/journal.pone.0125418. eCollection 2015.

Cerebral β-Amyloidosis in Mice Investigated by Ultramicroscopy

Affiliations

Cerebral β-Amyloidosis in Mice Investigated by Ultramicroscopy

Nina Jährling et al. PLoS One. .

Abstract

Alzheimer´s disease (AD) is the most common neurodegenerative disorder. AD neuropathology is characterized by intracellular neurofibrillary tangles and extracellular β-amyloid deposits in the brain. To elucidate the complexity of AD pathogenesis a variety of transgenic mouse models have been generated. An ideal imaging system for monitoring β-amyloid plaque deposition in the brain of these animals should allow 3D-reconstructions of β-amyloid plaques via a single scan of an uncropped brain. Ultramicroscopy makes this possible by replacing mechanical slicing in standard histology by optical sectioning. It allows a time efficient analysis of the amyloid plaque distribution in the entire mouse brain with 3D cellular resolution. We herein labeled β-amyloid deposits in a transgenic mouse model of cerebral β-amyloidosis (APPPS1 transgenic mice) with two intraperitoneal injections of the amyloid-binding fluorescent dye methoxy-X04. Upon postmortem analysis the total number of β-amyloid plaques, the β-amyloid load (volume percent) and the amyloid plaque size distributions were measured in the frontal cortex of two age groups (2.5 versus 7-8.5 month old mice). Applying ultramicroscopy we found in a proof-of-principle study that the number of β-amyloid plaques increases with age. In our experiments we further observed an increase of large plaques in the older age group of mice. We demonstrate that ultramicroscopy is a fast, and accurate analysis technique for studying β-amyloid lesions in transgenic mice allowing the 3D staging of β-amyloid plaque development. This in turn is the basis to study neural network degeneration upon cerebral β-amyloidosis and to assess Aβ-targeting therapeutics.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Ultramicroscopy setup.
Principle of standard UM consisting of a slit aperture and a single cylindrical lens on each illumination side. The transparent brain is illuminated perpendicular to the observation pathway by a laser forming a thin sheet of light. The emitted fluorescence light is projected to a camera target by an objective, while a matched optical filter blocks the excitation light. By moving the specimen through the light sheet a stack of images is recorded. From these data a 3D-reconstruction is calculated by software. 1) Optical system (OS), which generates a magnified parallel beam. This beam is divided into two equal parts using a beam splitter. 2) Rectangular-slit aperture, 3) cylindrical lens, 4) clamp, 5) brain, 6) Sy: computer-controlled elevation (y-direction), 7) Sz: computer-controlled linear stage (z-direction), 8) immersion cap, 9) objective, 10) tube lens(es), 11) camera target, 12) computer with imaging software, 13) computer with 3D reconstruction software.
Fig 2
Fig 2. UM´s example images of APPPS1.
Cross sections in the orthogonal directions are used to analyze the β-amyloid plaque distribution in the entire mouse brain of APPPS1. The β-amyloid plaques appear as bright dots in the neocortex (example of an animal of the young group is shown). A) Transversal plane (x,y); B) transversal plane (x,y); C) Computed sagittal plane (yz); D) computed coronal plane (xz). ctx: cortex; cb: cerebellum; hc: hippocampus, bs: brainstem; ob: olfactory bulb.
Fig 3
Fig 3. Comparison between a young (2.3-month-old) and adult (7.5-month-old) APPPS1 tg brain.
3D reconstructions demonstrate an overall age-related increase in β-amyloid plaques. The maximum intensity projections of reconstructed images show a higher plaque density with increasing age. Brain from a mouse at 2.3 months of age viewed from the top (A), from the right side (B) and left side of (C). D) Brain from a mouse at 7.5 months of age viewed from the top (D), from the right side (E) of and left side (F). Scale bar: 1mm.
Fig 4
Fig 4. Location of measured test-cubes.
β-Amyloid plaques (yellow dots) in the right hemisphere of the frontal cortex in the APPPS1 mouse model, side view: example from the young (2.7 month-old) group (A) and the adult (7.8 month-old) group (B). Positioning of the six cubed-shaped areas (purple color) in the frontal cortex for measuring the β-amyloid plaque volumes by applying a threshold segmentation technique. C-D) Top view of the frontal cortex: example from the young group (C) and old group (D). After segmentation amyloid plaque volumes of the six cubed shaped areas are represented in various colors. Scale bar 500 μm.
Fig 5
Fig 5. Quantification of the number of amyloid plaques per mm3.
The total β-amyloid plaque number per mm3 was obtained from six sample cubes, acquired within the frontal cortex of young (2.5 months) and adult (7–8.5 months) APPPS1 tg mice. The total number of plaque per mm3 increases with age.
Fig 6
Fig 6. Quantification of the 3D β-amyloid plaque load.
The β-amyloid plaque load (volume %) was obtained from six sample cubes, acquired within the frontal cortex of young (2.5 months) and adult (7–8.5 months) APPPS1 tg mice. The β-amyloid plaque load in the adult group is significantly higher compared to the young group (p<0.001, t-test).
Fig 7
Fig 7. Histograms of plaque diameters.
The plaque sizes were binned into size groups of 10 μm for the young and the adult mice. In total, the number of β-amyloid plaques in all size classes was increased in the adult group. All plaques within the young group and the adult group, respectively were counted for histogram generation.
Fig 8
Fig 8. Variations in the fraction of plaques for different diameters.
In the β-amyloid plaque diameter categories 40–50μm plaques were relatively more frequent in the adult animals. However, in the diameter group of 20–30 μm plaques were relatively more frequent in the young animals. For the β-amyloid plaque diameter categories 0–20 μm and 30–40 μm no significant differences could be shown. It cannot by excluded that plaques > 50 μm may be due to agglomeration of smaller plaques or artefacts.

Similar articles

Cited by

References

    1. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer´s disease: the challenge of the second century. Sci Transl Med 3:77sr1 10.1126/scitranslmed.3002369 - DOI - PMC - PubMed
    1. Duyckaerts C, Portier MC, Delatour B (2008) Alzheimers disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38. - PMC - PubMed
    1. Jucker M (2010). The benefits and limitations of animal models for translational research in neurodegenerative disease. Nat. Med. 16:1210–4 10.1038/nm.2224 - DOI - PubMed
    1. Manook A, Behrooz HY, Willuweit A, Platzer S, Reder S, Voss A, et al. A (2012) Small-animal PET Imaging of amyloid-beta plaques with [11C]PiB and its multi-modal Validation in an APP/PS1 mouse model of Alzheimer´s Disease. PLoS One: e31310. - PMC - PubMed
    1. Maier FC, Wehrl HF, Schmid AM, Mannheim JG, Wiehr S, Lerdkrai C, et al. (2014) Longitudinal PET/MRI reveals β-amyloid deposition and rCBF dynamics, and connects vascular amyloidosis to quantitative loss of perfusion. Nature Medicine, 10.1038/nm.3734 - DOI - PubMed

Publication types