Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 15;264(26):15634-41.

Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells

Affiliations
  • PMID: 2570073
Free article

Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells

J E Metherall et al. J Biol Chem. .
Free article

Abstract

Two genes that encode enzymes in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and HMG-CoA synthase, and the gene encoding the low density lipoprotein (LDL) receptor are repressed when sterols accumulate in animal cells. Their 5'-flanking regions contain a common element, designated sterol regulatory element-1 (SRE-1). In the HMG-CoA synthase and LDL receptor promoters, the SRE-1 enhances transcription in the absence of sterols and is inactivated in the presence of sterols. In the HMG-CoA reductase promoter, the region containing the SRE-1 represses transcription when sterols are present. In the current studies, we show that the SRE-1 retains enhancer function but loses sterol sensitivity in mutant Chinese hamster ovary cells that are resistant to the repressor, 25-hydroxycholesterol. In the absence of sterols, the mutant cells produced high levels of all three sterol-regulated mRNAs, and there was no repression by 25-hydroxycholesterol. When transfected with plasmids containing each of the regulated promoters fused to a bacterial reporter gene, the mutant cells showed high levels of transcription in the absence of sterols and no significant repression by sterols. When the SRE-1 in the LDL receptor and HMG-CoA synthase promoters was mutated prior to transfection into the mutant cells, transcription was markedly reduced. Thus, the 25-hydroxycholesterol-resistant cells retain a protein that enhances transcription by binding to the SRE-1 in the absence of sterols, but they have lost the function of a protein that abolishes this enhancement in the presence of sterols. Mutation of a 30-base pair segment of the HMG-CoA reductase promoter that contains the SRE-1 did not reduce transcription in the mutant cells, indicating that this promoter is driven by elements other than the SRE-1. Nevertheless, this promoter failed to be repressed by sterols in the mutant cells. These data suggest that a common factor mediates the effects of sterols on the SRE-1 in all three promoters and that this factor has been functionally lost in the 25-hydroxycholesterol-resistant cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources