Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
- PMID: 25599176
- DOI: 10.1038/nbt.3102
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
Abstract
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
Comment in
-
Kindred cells among the crowd.Nat Methods. 2015 Mar;12(3):170-1. doi: 10.1038/nmeth.3307. Nat Methods. 2015. PMID: 25879100 No abstract available.
-
The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.Nat Biotechnol. 2016 Jun 9;34(6):591-3. doi: 10.1038/nbt.3498. Nat Biotechnol. 2016. PMID: 27281413 Free PMC article. No abstract available.
-
Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.Nat Biotechnol. 2016 May 6;34(6):593-5. doi: 10.1038/nbt.3607. Nat Biotechnol. 2016. PMID: 27281414 No abstract available.
Similar articles
-
f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq.Genome Biol. 2017 Nov 7;18(1):212. doi: 10.1186/s13059-017-1334-8. Genome Biol. 2017. PMID: 29115968 Free PMC article.
-
Constructing cell lineages from single-cell transcriptomes.Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review.
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types.Nature. 2015 Sep 10;525(7568):251-5. doi: 10.1038/nature14966. Epub 2015 Aug 19. Nature. 2015. PMID: 26287467
-
Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation.Sci Rep. 2015 Aug 21;5:13339. doi: 10.1038/srep13339. Sci Rep. 2015. PMID: 26292941 Free PMC article.
-
Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes.Development. 2020 Jan 24;147(2):dev179788. doi: 10.1242/dev.179788. Development. 2020. PMID: 31980483 Review.
Cited by
-
Wishbone identifies bifurcating developmental trajectories from single-cell data.Nat Biotechnol. 2016 Jun;34(6):637-45. doi: 10.1038/nbt.3569. Epub 2016 May 2. Nat Biotechnol. 2016. PMID: 27136076 Free PMC article.
-
Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression.iScience. 2021 Jan 29;24(2):102118. doi: 10.1016/j.isci.2021.102118. eCollection 2021 Feb 19. iScience. 2021. PMID: 33659881 Free PMC article.
-
Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design.BMC Biotechnol. 2016 Jun 24;16(1):54. doi: 10.1186/s12896-016-0281-x. BMC Biotechnol. 2016. PMID: 27342544 Free PMC article.
-
Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease.Neurobiol Aging. 2016 Jun;42:80-90. doi: 10.1016/j.neurobiolaging.2016.02.031. Epub 2016 Mar 8. Neurobiol Aging. 2016. PMID: 27143424 Free PMC article.
-
From G1 to M: a comparative study of methods for identifying cell cycle phases.Brief Bioinform. 2024 Jan 22;25(2):bbad517. doi: 10.1093/bib/bbad517. Brief Bioinform. 2024. PMID: 38261342 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases