Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
- PMID: 25599176
- DOI: 10.1038/nbt.3102
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
Abstract
Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.
Comment in
-
Kindred cells among the crowd.Nat Methods. 2015 Mar;12(3):170-1. doi: 10.1038/nmeth.3307. Nat Methods. 2015. PMID: 25879100 No abstract available.
-
The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.Nat Biotechnol. 2016 Jun 9;34(6):591-3. doi: 10.1038/nbt.3498. Nat Biotechnol. 2016. PMID: 27281413 Free PMC article. No abstract available.
-
Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data.Nat Biotechnol. 2016 May 6;34(6):593-5. doi: 10.1038/nbt.3607. Nat Biotechnol. 2016. PMID: 27281414 No abstract available.
Similar articles
-
f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq.Genome Biol. 2017 Nov 7;18(1):212. doi: 10.1186/s13059-017-1334-8. Genome Biol. 2017. PMID: 29115968 Free PMC article.
-
Constructing cell lineages from single-cell transcriptomes.Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review.
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types.Nature. 2015 Sep 10;525(7568):251-5. doi: 10.1038/nature14966. Epub 2015 Aug 19. Nature. 2015. PMID: 26287467
-
Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation.Sci Rep. 2015 Aug 21;5:13339. doi: 10.1038/srep13339. Sci Rep. 2015. PMID: 26292941 Free PMC article.
-
Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes.Development. 2020 Jan 24;147(2):dev179788. doi: 10.1242/dev.179788. Development. 2020. PMID: 31980483 Review.
Cited by
-
Advances and applications of single-cell sequencing technologies.Mol Cell. 2015 May 21;58(4):598-609. doi: 10.1016/j.molcel.2015.05.005. Mol Cell. 2015. PMID: 26000845 Free PMC article. Review.
-
Selective single cell isolation for genomics using microraft arrays.Nucleic Acids Res. 2016 Sep 30;44(17):8292-301. doi: 10.1093/nar/gkw700. Epub 2016 Aug 16. Nucleic Acids Res. 2016. PMID: 27530426 Free PMC article.
-
A top-down measure of gene-to-gene coordination for analyzing cell-to-cell variability.Sci Rep. 2021 May 26;11(1):11075. doi: 10.1038/s41598-021-90353-w. Sci Rep. 2021. PMID: 34040065 Free PMC article.
-
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm.Genome Biol. 2016 Aug 17;17(1):173. doi: 10.1186/s13059-016-1033-x. Genome Biol. 2016. PMID: 27534536 Free PMC article.
-
scSID: A lightweight algorithm for identifying rare cell types by capturing differential expression from single-cell sequencing data.Comput Struct Biotechnol J. 2024 Jan 3;23:589-600. doi: 10.1016/j.csbj.2023.12.043. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 38274993 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases