Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb;185(2):409-19.
doi: 10.1016/j.ajpath.2014.10.009. Epub 2015 Jan 12.

The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats

Affiliations
Free article

The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats

Len Verbeke et al. Am J Pathol. 2015 Feb.
Free article

Abstract

Bacterial translocation (BTL) drives pathogenesis and complications of cirrhosis. Farnesoid X-activated receptor (FXR) is a key transcription regulator in hepatic and intestinal bile metabolism. We studied potential intestinal FXR dysfunction in a rat model of cholestatic liver injury and evaluated effects of obeticholic acid (INT-747), an FXR agonist, on gut permeability, inflammation, and BTL. Rats were gavaged with INT-747 or vehicle during 10 days after bile-duct ligation and then were assessed for changes in gut permeability, BTL, and tight-junction protein expression, immune cell recruitment, and cytokine expression in ileum, mesenteric lymph nodes, and spleen. Auxiliary in vitro BTL-mimicking experiments were performed with Transwell supports. Vehicle-treated bile duct-ligated rats exhibited decreased FXR pathway expression in both jejunum and ileum, in association with increased gut permeability through increased claudin-2 expression and related to local and systemic recruitment of natural killer cells resulting in increased interferon-γ expression and BTL. After INT-747 treatment, natural killer cells and interferon-γ expression markedly decreased, in association with normalized permeability selectively in ileum (up-regulated claudin-1 and occludin) and a significant reduction in BTL. In vitro, interferon-γ induced increased Escherichia coli translocation, which remained unaffected by INT-747. In experimental cholestasis, FXR agonism improved ileal barrier function by attenuating intestinal inflammation, leading to reduced BTL and thus demonstrating a crucial protective role for FXR in the gut-liver axis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources