Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;9(9):3040-57.
doi: 10.1523/JNEUROSCI.09-09-03040.1989.

Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5

Affiliations

Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5

R G Morris. J Neurosci. 1989 Sep.

Abstract

This paper reports a series of 5 experiments concerned with a possible role for N-methyl-D-aspartate (NMDA) receptors in certain types of learning. The results show that chronic intraventricular infusion of the NMDA receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (D,L-AP5) caused an impairment of spatial but not of visual discrimination learning in rats. Such selectivity of the learning impairment occurred despite widespread distribution of the drug throughout the CNS. AP5 sometimes caused a disturbance of sensorimotor function during learning, but one experiment addressing whether this disturbance could be responsible for the spatial learning impairment established that it was statistically independent. Another experiment showed that AP5 did not affect the retention of previously acquired spatial information. These behavioral effects were all obtained with a concentration of AP5 that, in a final study, was found to be sufficient to block hippocampal long-term potentiation (LTP) in vivo without affecting normal synaptic transmission. Taken together, these observations (1) implicate NMDA receptors in certain types of learning, and (2) extend recent work showing that saturation of LTP causes an anterograde spatial amnesia (McNaughton et al., 1986). A preliminary report of parts of this work has been published (Morris et al., 1986a).

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources