Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 14;20(46):17439-47.
doi: 10.3748/wjg.v20.i46.17439.

MiR-374b-5p suppresses RECK expression and promotes gastric cancer cell invasion and metastasis

Affiliations

MiR-374b-5p suppresses RECK expression and promotes gastric cancer cell invasion and metastasis

Juan Xie et al. World J Gastroenterol. .

Abstract

Aim: To profile expression of microRNAs (miRNAs) in gastric cancer cells and investigate the effect of miR-374b-5p on gastric cancer cell invasion and metastasis.

Methods: An miRNA microarray assay was performed to identify miRNAs differentially expressed in gastric cancer cell lines (MGC-803 and SGC-7901) compared with a normal gastric epithelial cell line. Upregulation of miR-374b-5p was newly identified and confirmed via quantitative real-time reverse transcription-PCR (qRT-PCR). MGC-803 cells were transfected with a synthesized anti-miR-374b-5p sequence or a control vector using Lipofectamine reagent, or treated with transfection reagent alone or phosphate-buffered saline as controls. Rate of transfection was verified after 48 h by qRT-PCR. Cells were then subjected to transwell migration, wound scratch and cell counting kit-8 assays. A bioinformatic analysis to identify miR-374b-5p target genes was performed using miRanda, PicTar and TargetScan software. A dual luciferase reporter assay was performed to evaluate the influence of miR-374b-5p on target gene activation, and qRT-PCR and Western blot were used to evaluate the levels of target mRNA and protein following transfection with miR-374b-5p antisense oligonucleotides.

Results: The microarray profiling revealed downregulation of 14 (fold change < 0.667; P < 0.05) and upregulation of 12 (fold change > 1.50; P < 0.05) miRNAs in MGC-803 and SGC-7901 cells compared with GES-1 controls. The upregulation of miR-374b-5p (fold change = 1.75 and 1.64 in MGC-803 and SGC-7901, respectively; P < 0.05) was confirmed by qRT-PCR. Compared with the control groups, the restoration of miR-374b-5p expression with anti-miR-374b-5p significantly suppressed the metastasis, invasion and proliferation of MGC-803 cells. The bioinformatic analysis predicted that the 3' untranslated region (UTR) of reversion-inducing cysteine-rich protein with Kazal motif (RECK) contains three miR-374b-5p target sequences. RECK was verified as a target gene in a dual luciferase reporter assay showing that activation of RECK 3'UTR-pmirGLO was increased by co-transfection with miR-374b-5p. Finally, transfection of miR-374b-5p antisense oligonucleotides increased mRNA and protein levels of RECK in MGC-803 cells (P < 0.05).

Conclusion: These findings indicate that upregulation of miR-374b-5p contributes to gastric cancer cell metastasis and invasion through inhibition of RECK expression.

Keywords: Gastric cancer; Invasion and metastasis; RECK; miR-374b-5p; microRNAs microarray.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Differential expression of microRNAs in gastric cancer cells. A: microRNA (miRNA) expression in gastric cancer cell lines SGC-7901 and MGC-803 was compared with the normal GES-1 cell line using cluster analysis. All cell samples were detected in triplicate, such that the nine lanes include GES-1 (G1-G3), SGC-7901 (S1-S3) and MGC-803 (M1-M3). The color scale denotes the extent of relative upregulation (red) and downregulation (green); B: Histogram of miR-374b-5p expression detected by cluster analysis; C: Confirmation of miR-374b-5p expression via quantitative real-time reverse transcription-polymerase chain reaction (n = 3); aP < 0.05 vs GSE-1.
Figure 2
Figure 2
Effects of miR-374b-5p on MGC-803 cell metastasis and invasion. MGC-803 cells were transfected with a miR-374b-5p antisense oligonucleotide or negative control-oligo vector, or treated with phosphate-buffered saline (untreated), or transfection reagent only. A: Cells were subjected to a transwell invasion assay and detected at 48 h after seeding (left: Coomassie Brilliant Blue staining, × 200; right, quantification); B: Wound margin distance was measured after 48 h in a scratch assay (Coomassie Brilliant Blue staining, × 40); C: Absorbances in a cell counting kit-8 assay 96 h after transfection; (n = 3), aP < 0.05 vs Anti-miR-374b-5p.
Figure 3
Figure 3
Regulation of RECK expression in MGC-803 cells by miR-374b-5p. A: The miR-374b-5p binding site within the 3′ UTR of human (hsa) RECK cDNA was predicted with PicTar, TargetScan and miRanda software; B: Cells were co-transfected with RECK 3’UTR-pmirGLO and a plasmid containing either miR-374b-5p or miR-NC plasmid, aP < 0.05 vs miR-NC (n = 3); C: Western blot of proteins; D: qRT-PCR from cells transfected for 48 h with anti-miR-374b-5p or a negative control vector, or treated with phosphate-buffered saline (untreated), or transfection reagent only; (n = 3), cP < 0.05 vs Anti-miR-374b-5p.

Similar articles

Cited by

References

    1. Shah MA, Kelsen DP. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Canc Netw. 2010;8:437–447. - PubMed
    1. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61:673–684. - PMC - PubMed
    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. - PubMed
    1. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–866. - PubMed
    1. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–378. - PubMed

Publication types

MeSH terms