Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 23;10(10):e1004398.
doi: 10.1371/journal.ppat.1004398. eCollection 2014 Oct.

Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities

Affiliations

Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities

Jose Luis Ramirez et al. PLoS Pathog. .

Abstract

Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Csp_P colonization of the mosquito midgut.
All mosquitoes were exposed to Csp_P via sugar meal. To introduce Csp_P via sugar meal, adults were allowed to feed for 24 h on 1.5% sucrose containing Csp_P liquid culture at a final concentration of ∼108 CFU/ml for An. gambiae and ∼106 (A, B) or 1010 (F) CFU/ml for Ae. aegypti. For antibiotic treated mosquitoes, the prevalence of Csp_P was measured in Ae. aegypti and An. gambiae midguts at 3 days post-exposure (A). The number of colony forming units (CFUs) of Csp_P was also measured in the midguts of (B) Ae. aegypti and (C) An. gambiae 3 days after exposure to Csp_P. Experiments for antibiotic treated Ae. aegypti and An. gambiae were replicated at least three times. Final sample sizes: nAe. aegypti/PBS = 37; nAe. aegypti/Csp_P = 37; nAn. gambiae/PBS = 30; nAn. gambiae/Csp_P = 17. For septic (i.e. non-antibiotic treated) mosquitoes, the prevalence and bacterial load of Csp_P was measured in An. gambiae midguts at 1 and 2 days post exposure (D,E). Experiments for septic An. gambiae were replicated twice. Final sample sizes: nAn. gambiae/PBS = 30; nAn. gambiae/Csp_P/Day 1 = 20; nAn. gambiae/Csp_P/Day 2 = 8. Prevalence of Csp_P was measured in Ae. aegypti midguts at 1 and 3 days post exposure (F). Experiments for septic Ae. aegypti were replicated twice. Final sample sizes: nAe. aegypti/Csp_P/Day 1 = 19; nAe. aegypti/Csp_P/Day 3 = 20. Horizontal lines indicate mean values. The following transformation was applied to all raw CFU data: y = log10(x+1), where x = original CFU count and y = plotted data values.
Figure 2
Figure 2. Csp_P exposure causes high mortality in adults and larvae.
Csp_P was experimentally introduced into the adult midgut via either a sugar meal (A–D) or blood meal (E, F), and mortality was observed over 5–8 days. To introduce Csp_P via sugar meal, adults were allowed to feed for 24 h on 1.5% sucrose containing Csp_P liquid culture at a final concentration of ∼108 CFU/ml for An. gambiae and ∼106 or 1010 CFU/ml for Ae. aegypti. Csp_P ingestion significantly decreased survival in sugar-fed aseptic (i.e. pre-treated with antibiotics) An. gambiae (A, p<0.0001) and Ae. aegypti (B, p<0.0001). Each experiment was replicated three times. Total sample sizes: (A)PBS = 149; (A)Csp_P = 146; (B)PBS = 70; (B)Csp_P = 70. Ingestion of Csp_P significantly decreased survival in sugar-fed septic (i.e. not treated with antibiotics) An. gambiae (C, p<0.0001). In septic Ae. aegypti, survival was significantly decreased after feeding on a 1010 CFU/ml sugar meal (D, p<0.0001) but not after feeding on a 106 CFU/ml sugar meal (D, p = 0.08). Experiments in C and D were replicated twice. Total sample sizes: (C)PBS = 95; (C)Csp_P = 124; (D)PBS = 185; (D)Csp10∧6 = 223; (D)Csp10∧10 = 226. To introduce Csp_P via blood meal, Csp_P liquid culture (∼108 CFU/ml) was mixed 1∶1 with human blood/serum and fed to septic An. gambiae (E) and Ae. aegypti (F) adults. Experiments were replicated three times with total sample sizes: (E)PBS = 59; (E)Csp_P = 51; (F)PBS = 37; (F)Csp_P = 62. The effects of Csp_P on larval mortality were also tested by placing 2- to 4-day-old An. gambiae (G) and Ae. aegypti (H) larvae in water containing Csp_P at a starting concentration of 106 CFU/ml and monitoring survival over 5 days. Experiments were replicated 2–3 times with final sample sizes: (G)PBS = 80; (G)Csp_P = 60; (H)PBS = 100; (H)Csp_P = 60. P values reported above were obtained by performing pairwise Log-Rank Tests between PBS and Csp_P treatments. Survival curves were fitted using the Kaplan-Meier method. Vertical tick-marks indicate censored samples; in C and D multiple individuals were dissected on each day to measure Csp_P prevalence and bacterial load for Figure 1.
Figure 3
Figure 3. Csp_P reduces mosquitoes' susceptibility to malaria and dengue infection.
In (A) and (C), antibiotic-treated adults were allowed to feed for 24 h on 1.5% sucrose containing Csp_P liquid culture at a final concentration of ∼108 CFU/ml for An. gambiae (A) and ∼106 CFU/ml for Ae. aegypti (C). After introduction of Csp_P via the sugar meal, An. gambiae mosquitoes were given a blood meal that contained P. falciparum, and Ae. aegypti mosquitoes were given a blood meal that contained dengue virus. In (B), Csp_P (106 CFU/ml) was introduced concurrently with P. falciparum via blood meal through blood feeding of antibiotic-treated An. gambiae. In all experiments, PBS was used as the non-Csp_P-exposed control. At 7 days after infection, midguts were dissected. Oocysts were counted in P. falciparum-infected An. gambiae females, and dengue virus titers were assayed in dengue-infected Ae. aegypti females by conducting standard plaque assays. Experiments were initiated using similar numbers of adult females in each treatment (A, B starting numbers = 45–50/trtmt, C starting numbers = 30–40/treatment). All experiments were replicated at least three times with final samples sizes: (A)PBS = 67, (A)Csp_P = 14, (B)PBS = 43, (B)Csp_P = 8, (C)PBS = 68, (C)Csp_P = 45. Differences between treatments were assessed by Mann-Whitney test (*, p<0.05; ***, p<0.001).
Figure 4
Figure 4. Csp_P elicits immune gene expression in the mosquito.
Induction of the Cec1 promoter in the SUA-5B cell-line exposed to P. putida and Chromobacterium sp. Csp_P. SUA-5B cells expressing a luciferase reporter gene driven by a Cec1 promoter were exposed to increasing concentrations of Csp_P and P. putida bacteria. Differences between bacteria-treated samples and PBS control samples were assessed by Dunnett's Multiple Comparison Test (**, p<0.01; ***, p<0.001).
Figure 5
Figure 5. Csp_P has anti-Plasmodium and anti-dengue activity in vitro.
Csp_P was grown under planktonic and/or biofilm conditions and tested for anti-pathogen activity independent of the mosquito. Five different preparations of Csp_P were tested: (a) planktonic-state liquid culture, (b) biofilm supernatant, (c) fresh biofilm, (d) dessicated biofilm, and (e) heat-inactivated biofilm. A fresh Comamonas sp biofilm was also tested as control. (A) Csp_P 36-h biofilm has anti-parasite activity against asexual-stage P. falciparum. Csp_P cultures were filtered using a 0.2-µm filter and mixed with ring-stage P. falciparum parasite cultures. SYBR green I was then added to each sample, and inhibition of asexual-stage P. falciparum by Csp_P was measured by assaying fluorescence relative to the negative control (parasite medium, standardized to 0% inhibition). Chloroquine was used as a positive control and standardized to 100% inhibition. We performed a Tukey's test on the raw data to determine whether each bacterial treatment differed significantly from the PBS+LB control (*** p<0.001). (B) Csp_P has anti-parasite activity against ookinete-stage P. falciparum. Csp_P bacterial preparations were filtered using a 0.2-µm filter and mixed with blood taken from female Swiss Webster mice infected with Renilla luciferase-expressing transgenic P. berghei. Ookinete-stage P. berghei parasite counts were determined using the Renilla luciferase assay system, and percent inhibition by Csp_P was calculated relative to the negative control (PBS+LB control, standardized to 0% inhibition). We performed a Tukey's test to determine whether each bacterial treatment differed significantly from the control (*p<0.05, ***, p<0.001). (C) Csp_P 42-h biofilm has anti-parasite activity against gametocyte-stage P. falciparum. Csp_P cultures were filtered using a 0.2-µm filter and mixed with gametocyte-stage P. falciparum cultures. Erythrocytes were examined for gametocytes using Giemsa-stained blood films collected 3 days after Csp_P exposure. The red X indicates that the supernatant caused hemolysis and was therefore unusable. We determined gametocyte density per 1000 RBCs for each sample and performed a Tukey's test to determine whether each bacterial treatment significantly differed from the PBS+LB control (*p<0.05, *** p<0.001). (D) Csp_P has anti-dengue activity. Each Csp_P bacterial preparation (75 µl, unfiltered) was mixed with 75 µl MEM containing dengue virus serotype 2 and incubated at room temperature for 45 min. Samples were then filtered through a 0.2-µm filter and used to infect BHK21-15 cells. Percent inhibition was calculated as the percent decrease in PFU/ml relative to the negative control (PBS+LB, standardized to 0% inhibition). We analyzed the significance of pairwise comparisons between each treatment and the control using a Tukey's test (***, p<0.001). (E) Csp_P has anti-dengue activity when virus is suspended in human blood. Biofilms from multiple bacteria were tested for anti-dengue activity. All bacteria tested were isolated from field-caught Ae. aegypti mosquitoes. Ps.sp = Pseudomonas sp., Pr.sp = Proteus sp., Pn.sp = Paenobacillus sp., Co.sp = Comamonas sp., Pa.sp = Pantoea sp., Ae.sp = Aeromonas sp. . The biofilm from each species was grown for 48 h at room temperature, and dengue virus mixed 1∶1 with human blood was added directly to the biofilm. After a 45-min incubation, the virus+blood/bilofilm solution was filtered and used to infect C6/36 cells. Biofilm sup = biofilm supernatant, H. I. biofilm = heat inactivated biofilm, dess. biofilm = dessicated biofilm re-suspended in 1× PBS.
Figure 6
Figure 6. Csp_P has anti-bacterial activity against many species commonly found in the midguts of Aedes and Anopheles mosquitoes.
Csp_P was streaked on LB agar along with multiple bacterial species, and plates were observed for formation of zones of inhibition around Csp_P. Ps.sp = Presudomonas sp., Pr.sp = Proteus sp., C.sp_P = Chromobacterium sp_P, C.v = C. violaceum, Pn.sp = Paenobacillus sp., Co.sp = Comamonas sp., Ac.sp = Acinetobacter sp., P.pu = Pseudomonas putida, E.sp = Enterobacter sp., Pa.sp = Pantoea sp., S.sp = Serratia sp., Ch.sp = Chryseobacterium sp. , , .

Similar articles

Cited by

References

    1. Cirimotich CM, Ramirez JL, Dimopoulos G (2011) Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10: 307–310 10.1016/j.chom.2011.09.006 - DOI - PMC - PubMed
    1. Cirimotich CM, Clayton AM, Dimopoulos G (2011) Low- and high-tech approaches to control Plasmodium parasite transmission by anopheles mosquitoes. J Trop Med 2011: 891342 10.1155/2011/891342 - DOI - PMC - PubMed
    1. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto J A, et al. (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332: 855–858 10.1126/science.1201618 - DOI - PMC - PubMed
    1. Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE (2003) Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development. J Med Entomol 40: 371–374. - PubMed
    1. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, et al. (2012) Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: e1561 10.1371/journal.pntd.0001561 - DOI - PMC - PubMed

Publication types

Substances