Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug 19:4:112.
doi: 10.3389/fcimb.2014.00112. eCollection 2014.

How microorganisms use hydrophobicity and what does this mean for human needs?

Affiliations
Review

How microorganisms use hydrophobicity and what does this mean for human needs?

Anna Krasowska et al. Front Cell Infect Microbiol. .

Abstract

Cell surface hydrophobicity (CSH) plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

Keywords: adhesion; bioremediation; cell surface; hydrophobicity; pathogens.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abbasnezhad H., Gray M., Foght J. M. (2011). Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl. Microbiol. Biotechnol. 92, 653–675 10.1007/s00253-011-3589-4 - DOI - PubMed
    1. Absolom D., Lamberti F., Policova Z., Zingg W., van Oss C., Neumann A. (1983). Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46, 90–97 - PMC - PubMed
    1. Adav S., Lee D., Show K., Tay J. (2005). Microstructural optimization of wastewater treatment by aerobic granular sludge, in Aerobic Granular Sludge, eds Bathe S., de Kreuk M. K., McSwain B., Schwarzenbeck N. (London: IWA Publishing; ), 213–219
    1. Adav S., Lee D., Show K., Tay J. (2008). Aerobic granular sludge: recent advances. Biotechnol. Adv. 26, 411–423 10.1016/j.biotechadv.2008.05.002 - DOI - PubMed
    1. Akama H., Kanemaki M., Yoshimura M., Tsukihara T., Kashiwagi T., Yoneyama H., et al. (2004). Crystal structure of the drug discharge outer membrane protein OprM of Pseudomonas aeruginosa, dual modes of membrane anchoring and occluded cavity end. J. Biol. Chem. 279, 52816–52819 10.1074/jbc.C400445200 - DOI - PubMed

Publication types