Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 Jul 14;9(7):e102031.
doi: 10.1371/journal.pone.0102031. eCollection 2014.

Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling

Affiliations
Randomized Controlled Trial

Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling

Mikkel Holm Vendelbo et al. PLoS One. .

Abstract

Aim: Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth.

Methods: Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.

Results: Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.

Conclusions: Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Study protocol.
Subjects were examined on 2 separate days in random order: 1) after an overnight fast of 10 hours and 2) after a 72-hour fast. On both experimental days infusions of phenylalanine, tyrosine and urea tracers were initiated at t = 0, to measure amino acid kinetics during a 4 hour period (t = 0–240), followed by a 2-hour hyperinsulinemic euglycemic clamp (t = 240–360). At t = 30 and 270 min, a muscle biopsy was obtained from vastus lateralis of the quadriceps femoris muscle.
Figure 2
Figure 2. Arteriovenous phenylalanine kinetics across the forearm was assessed after an overnight fast of 10(control) and after a 72-hour-fast (fast) to determine net phenylalanine release, phenylalanine Rd, and phenylalanine Ra.
Throughout the figure, open bars indicate control situation in the basal period and filled bars indicate 72: There was a significant increased forearm net phenylalanine release after 72 hours of fasting (‡ P = 0.015). B and C: The increased muscle wasting was associated with a trend (P = 0.09) toward decreased skeletal muscle protein synthesis (phenylalanine Rd) without any change in skeletal muscle protein breakdown (phenylalanine Ra).
Figure 3
Figure 3. mTOR signaling pathway.
A: Representative blots show from left to right control situation before and after insulin stimulation and fasting conditions before and after insulin stimulation. Phosphorylated (p), non-phosphorylated (non-p), and total protein expression. Total protein expression and phosphorylation of mTOR, 4EBP1, rpS6, TSC2, and eIF2α, from muscle biopsies taken after an overnight fast of 10 hours (control) and after a 72-hour-fast (fast) before and during a hyperinsulinemic euglycemic clamp, were assessed with western blotting. Throughout the figure, open bars indicate no insulin stimulation and filled bars insulin stimulation. B: Phosphorylation of mTOR was significantly decreased after 72 hours fasting (§ P<0.05). Furthermore, there was a main effect of 72 hours of fasting (* P<0.05) and insulin stimulation on mTOR Ser2448 phosphorylation († P<0.05). Post hoc test showed that mTOR phosphorylation before and during insulin stimulation was significantly decreased (‡ P<0.05). C: Phosphorylation of 4EBP1 Thr46 was significantly decreased after 72 hours fasting, seen by increased non-phosphorylated 4EBP1 Thr46 (§ P<0.05). Furthermore, there was a main effect of insulin stimulation on 4EBP1 Thr46 phosphorylation († P<0.05). D: There was a main effect of insulin stimulation on rpS6 Ser235-236 phosphorylation († P<0.05) when normalized to total rpS6 protein expression. E: Total rpS6 protein expression was significantly decreased after 72 hours fasting (§ P<0.05). There was a main effect of 72 hours fasting (* P<0.05) on rpS6 protein expression and post hoc test showed that control vs. fasting before and during insulin stimulation was significantly decreased (‡ P<0.05). F: There was a main effect of 72 hours fasting (* P<0.05) and insulin stimulation on rpS6 Ser235-236 phosphorylation († P<0.05) when normalized to β-actin. Post hoc test showed that rpS6 phosphorylation before and during insulin stimulation was significantly decreased (‡ P<0.05). G: 72 hours of fasting and insulin stimulation did not affect TSC2 phosphorylation at the AMPK target site Ser1387. H: Fasting and insulin stimulation revealed a significant interaction of eIF2α Ser51 phosphorylation (p = 0.048). Post-hoc test showed a trend (p = 0.059) between phosphorylation levels after 72 hours fasting in basal condition.
Figure 4
Figure 4. ULK1, LC3B, p62, FOXO3a, MAFbx, and MURF1 levels in skeletal muscle biopsies taken after an overnight fast of 10(control) and after a 72-hour-fast (fast) before and during a hyperinsulinemic euglycemic clamp were assessed with western blotting.
Throughout the figure, open bars indicate no insulin stimulation and filled bars insulin stimulation. A: Phosphorylation of ULK1 was significantly decreased after 72 hours fasting (§ P<0.05). Furthermore, there was a main effect of 72 hours of fasting (* P<0.05) and insulin stimulation on ULK1 Ser757 phosphorylation († P<0.05). Post hoc test showed that ULK1 phosphorylation in basal condition was significantly decreased after fasting (‡ P<0.05). B: there was a main effect of 72 hours of fasting (* P<0.05) and insulin stimulation († P<0.05) on LC3B-II expression. Post hoc test showed that LC3B-II before and during insulin stimulation was significantly increased (‡ P<0.05). C: there was a main effect of 72 hours of fasting on p62 protein expression (* P<0.05). Post hoc test showed that p62 expression was significantly increased both during the basal period and during the hyperinsulinemic euglycemic clamp (‡ P<0.05), without any effect of insulin stimulation. D, E, and F: 72 hours of fasting and insulin stimulation did not affect FOXO3a Ser318-321 phosphorylation or protein expression of MAFbx and MURF1.

Similar articles

Cited by

References

    1. Thomson TJ, Runcie J, Miller V (1966) Treatment of obesity by total fasting for up to 249 days. Lancet 2: 992–996. - PubMed
    1. Cahill GF Jr (1970) Starvation in man. N Engl J Med 282: 668–675. - PubMed
    1. Owen OE, Smalley KJ, D'Alessio DA, Mozzoli MA, Dawson EK (1998) Protein, fat, and carbohydrate requirements during starvation: anaplerosis and cataplerosis. Am J Clin Nutr 68: 12–34. - PubMed
    1. Pozefsky T, Tancredi RG, Moxley RT, Dupre J, Tobin JD (1976) Effects of brief starvation on muscle amino acid metabolism in nonobese man. J Clin Invest 57: 444–449. - PMC - PubMed
    1. Fryburg DA, Barrett EJ, Louard RJ, Gelfand RA (1990) Effect of starvation on human muscle protein metabolism and its response to insulin. Am J Physiol 259: E477–482. - PubMed

Publication types

LinkOut - more resources