Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;60(1):349-61.
doi: 10.1002/hep.27094. Epub 2014 May 28.

Reversal of hepatocyte senescence after continuous in vivo cell proliferation

Affiliations

Reversal of hepatocyte senescence after continuous in vivo cell proliferation

Min-Jun Wang et al. Hepatology. 2014 Jul.

Abstract

A better understanding of hepatocyte senescence could be used to treat age-dependent disease processes of the liver. Whether continuously proliferating hepatocytes could avoid or reverse senescence has not yet been fully elucidated. We confirmed that the livers of aged mice accumulated senescent and polyploid hepatocytes, which is associated with accumulation of DNA damage and activation of p53-p21 and p16(ink4a)-pRB pathways. Induction of multiple rounds continuous cell division is hard to apply in any animal model. Taking advantage of serial hepatocyte transplantation assays in the fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mouse, we studied the senescence of hepatocytes that had undergone continuous cell proliferation over a long time period, up to 12 rounds of serial transplantations. We demonstrated that the continuously proliferating hepatocytes avoided senescence and always maintained a youthful state. The reactivation of telomerase in hepatocytes after serial transplantation correlated with reversal of senescence. Moreover, senescent hepatocytes harvested from aged mice became rejuvenated upon serial transplantation, with full restoration of proliferative capacity. The same findings were also true for human hepatocytes. After serial transplantation, the high initial proportion of octoploid hepatocytes decreased to match the low level of youthful liver.

Conclusion: These findings suggest that the hepatocyte "ploidy conveyer" is regulated differently during aging and regeneration. The findings of reversal of hepatocyte senescence could enable future studies on liver aging and cell therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources