Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;323(6085):269-73.
doi: 10.1038/323269a0.

Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes

Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes

M Kuno et al. Nature. 1986 Sep.

Abstract

Cytoplasmic free Ca2+ [( Ca2+]i) appears to be an important signal for DNA synthesis in early stages of lymphocyte activation. In spite of many experimental studies which employ fluorescent Ca2+ indicator dye to demonstrate an early increase of [Ca2+]i in T-lymphocytes after stimulation with lectins, specific antigens, and monoclonal antibodies to T-lymphocyte receptors, the mechanism responsible for the rise of [Ca2+]i is unknown. We have used the extracellular patch clamp technique to investigate this mechanism. Unitary inward currents, mediated by Ca2+ or Ba2+, were recorded in the membrane of T-lymphocytes. The inward current channel was characterized by a conductance of 7 pS and extrapolated reversal potential (Erev) 110 mV positive to resting potential (Vr). While gating kinetic parameters were not affected by membrane potential changes, the probability of channel opening markedly increased upon activation of the T-lymphocyte by the mitogenic lectin, phytohaemagglutinin (PHA). PHA also evoked a cadmium-sensitive, inward Ba2+ current on whole-cell clamp. We suggest that this mitogen-regulated channel introduces Ca2+ into the cytoplasm upon activation and represents a new class of voltage-independent Ca2+ channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources