Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May;115(1):68-77.
doi: 10.1016/0012-1606(86)90228-9.

Identification and redistribution of lamins during nuclear differentiation in mouse spermatogenesis

Identification and redistribution of lamins during nuclear differentiation in mouse spermatogenesis

G G Maul et al. Dev Biol. 1986 May.

Abstract

Chromatin may be attached to the nuclear envelope through interaction of the nuclear membrane lamins A, B, and C. Such a hypothesis requires that these proteins are present in all cells with chromatin attachment to the nuclear envelope. We have investigated the distribution of the lamins during spermatogenesis in mouse, which exhibits extremes in nuclear envelope structural changes. By immunohistochemical techniques using human auto-antibodies and monoclonal antibodies against these molecules, we found that the lamins persist through all stages of spermatogenesis, though in highly variable amounts. They are also present during meiotic prophase (pachytene) when chromosomes are only locally attached to the nuclear envelope, analogous to the early prophase of somatic cells. Restructuring of the early spermatid nuclear envelope is accompanied by the appearance of a new lamin at the acrosomal fossa. In the epididymal spermatozoon the distribution of different lamins varies markedly over the nucleus suggesting special structural functions. The presence of lamins throughout spermatogenesis supports the concept that they are a general feature of the nuclear envelope structure, even where a lamina is not recognizable ultrastructurally.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources