Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 11;587(20):3348-53.
doi: 10.1016/j.febslet.2013.08.030. Epub 2013 Sep 7.

ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51

Affiliations
Free article

ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51

Tohru Yamamori et al. FEBS Lett. .
Free article

Abstract

In this study, we provide evidence that endoplasmic reticulum (ER) stress suppresses DNA double-strand break (DSB) repair and increases radiosensitivity of tumor cells by altering Rad51 levels. We show that the ER stress inducer tunicamycin stimulates selective degradation of Rad51 via the 26S proteasome, impairing DSB repair and enhancing radiosensitivity in human lung cancer A549 cells. We also found that glucose deprivation, which is a physiological inducer of ER stress, triggered similar events. These findings suggest that ER stress caused by the intratumoral environment influences tumor radiosensitivity, and that it has potential as a novel target to improve cancer radiotherapy.

Keywords: DNA double-strand break repair; DSB; ER; ER stress; ER-associated degradation; ERAD; HR; IR; NHEJ; RT-PCR; Rad51; Radiosensitivity; UPR; Unfolded protein response; double-strand break; endoplasmic reticulum; homologous recombination; ionizing radiation; non-homologous end joining; reverse transcription-PCR; unfolded protein response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances