Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;11(7):e1001610.
doi: 10.1371/journal.pbio.1001610. Epub 2013 Jul 16.

Production of α-galactosylceramide by a prominent member of the human gut microbiota

Affiliations

Production of α-galactosylceramide by a prominent member of the human gut microbiota

Laura C Wieland Brown et al. PLoS Biol. 2013 Jul.

Abstract

While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf)), which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000) that is the prototypical agonist of CD1d-restricted natural killer T (iNKT) cells. We demonstrate that α-GalCer(Bf) has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Chemical structures of the B. fragilis sphingolipids and related molecules.
(A) B. fragilis produces the phosphosphingolipid ceramide phosphoryl-ethanolamine (CPE, top) and the corresponding free ceramide (ceramideBf, middle), which are similar in structure to the most abundant (4,5-dehydro) and third-most abundant (4,5-dihydro) forms of sphingomyelin in human plasma (bottom). (B) B. fragilis produces the glycosphingolipid α-galactosylceramide (α-GalCerBf, top), which is similar in structure to the sponge-derived α-galactosylceramide agelasphin-9b (middle) and a widely used derivative of agelasphin-9b, KRN7000 (bottom). Chemical groups that vary among the molecules in each column are colored red and blue for B. fragilis and non–B. fragilis sphingolipids, respectively. CPE, ceramideBf, and α-GalCerBf were each purified as inseparable mixtures of varying lipid chain length. The proposed structures of the most abundant species are shown here.
Figure 2
Figure 2. B. fragilis Δ2461 is deficient in the production of sphingolipids.
HPLC-MS traces of crude lipid extracts of (A) wild-type B. fragilis and (B) the sphingolipid-deficient mutant ΔBF2461 are shown. The traces shown are the total ion count (black) and the extracted ion traces of sphingolipid masses for ceramide (m/z [M-H]: 540.5, 554.5, 568.5, 582.6; green), CPE (m/z [M-H]: 663.5, 677.5, 691.5, 705.5; brown), α-GalCerBf (m/z [M-H]: 702.6, 716.6, 730.6, 744.6; blue), and phosphatidylethanolamine (m/z [M-H]: 648.5, 662.5, 676.5, 690.5). Peaks corresponding to the three sphingolipids, but not the phospholipid phosphatidylethanolamine, are absent in B. fragilis Δ2461. (C) High-resolution mass spectra of CPE, ceramideBf, and α-GalCerBf collected in the negative ion mode. The insets show a zoomed-in view of the dominant field of peaks for each compound. (D) A table showing the calculated and observed masses for the dominant mass ions for each compound. See S1.1 in Supporting Information S1 for details.
Figure 3
Figure 3. α-GalCerBf binds CD1d and activates NKT cells.
(A) Hybridomas were stained with anti-CD3 antibodies and empty mCD1d tetramers or CD1d tetramers loaded with α-GalCerBf or KRN7000. Flow cytometry plots are pregated on DAPI events in lymphocyte gate stained with CD3 antibodies and the specified tetramer. Plots representative of three independent experiments are shown. (B) Hybridomas were cultured with BMDCs pre-pulsed with LPS or LPS + α-GalCerBf in the presence of control Ig or anti-CD1d blocking antibodies. IL-2 secretion was measured in supernatants 16 h later. Data are representative of three independent experiments. (C) Plates were coated with CD1d monomers and loaded with the specified amounts of α-GalCerBf. Hybridomas were then incubated for 16–18 h and IL-2 was measured in the supernatants by ELISA. Data are representative of three independent experiments. (D) Liver mononuclear cells were cultured with splenocytes plus increasing amounts of α-GalCerBf in the presence or absence of anti-CD1d blocking antibodies. IFN-γ secretion was measured in supernatants on day 5. Data are representative of three independent experiments. (E and F) Representative flow cytometry plots and pooled data of PBMCs cultured for 13–14 d with 0.1 µg/ml KRN7000, 1 µg/ml α-GalCerBf, or 1 µg/ml ceramideBf. Dot plots show all events in the lymphocyte gate stained with 6B11 (specific for Vα24) and CD3 antibodies. Gate shows percentage of Vα24+CD3+ NKT cells pre- and postexpansion. Pooled data showing six individual donors tested in three independent experiments. *p = 0.0078, **p = 0.0020 compared to control day 13 culture. (G–I) Bone-marrow-derived dendritic cells were pulsed in vitro with LPS only or LPS + α-GalCerBf for 24 h. The 0.4×106 cells were transferred to WT mice, which were treated with control Ig or anti-CD1d blocking antibody prior to cell transfer. Liver mononuclear cells were analyzed 16–18 h later. Data shown were pooled from three independent experiments. (G) Expression of CD25 and CD69 on gated CD3+tetramer+ cells. Representative flow cytometry plots and pooled data showing fold change of CD25 and CD69 surface expression compared to NKT cells isolated from mice transferred with LPS-pulsed BMDCs. (H) Representative flow cytometry plots and pooled data of intracellular IFN-γ expression on gated CD3+tetramer+ cells. (I) Serum IFN-γ levels.
Figure 4
Figure 4. Proposed pathway for Bacteroides sphingolipid biosynthesis.
BF2461, a putative serine palmitoyltransferase, would catalyze the pyridoxal-phosphate-dependent conjugation of serine and a long-chain acyl-CoA to form 3-ketodihydrosphingosine, which would undergo a ketoreductase-catalyzed conversion to dihydrosphingosine. At this branchpoint, dihydrosphingosine could either be phosphorylated by the putative sphingosine kinase BF2462 to form S1P, or it could undergo N-acylation to yield the observed dihydroceramide intermediate (compound 2). This common C34 scaffold would then be the substrate for two alternative head group modifications: glycosylation to form α-GalCerBf, or phosphorylethanolamine group transfer to form CPE.

Similar articles

Cited by

References

    1. Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7: 103–112.
    1. Rizza V, Tucker AN, White DC (1970) Lipids of Bacteroides melaninogenicus. J Bacteriol 101: 84–91. - PMC - PubMed
    1. Kunsman JE, Caldwell DR (1974) Comparison of the sphingolipid content of rumen Bacteroides species. Appl Microbiol 28: 1088–1089. - PMC - PubMed
    1. LaBach JP, White DC (1969) Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J Lipid Res 10: 528–534. - PubMed
    1. White DC, Tucker AN, Sweeley CC (1969) Characterization of the iso-branched sphinganines from the ceramide phospholipids of Bacteroides melaninogenicus. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 187: 527–532. - PubMed

Publication types

Substances