CellMix: a comprehensive toolbox for gene expression deconvolution
- PMID: 23825367
- DOI: 10.1093/bioinformatics/btt351
CellMix: a comprehensive toolbox for gene expression deconvolution
Abstract
Gene expression data are typically generated from heterogeneous biological samples that are composed of multiple cell or tissue types, in varying proportions, each contributing to global gene expression. This heterogeneity is a major confounder in standard analysis such as differential expression analysis, where differences in the relative proportions of the constituent cells may prevent or bias the detection of cell-specific differences. Computational deconvolution of global gene expression is an appealing alternative to costly physical sample separation techniques and enables a more detailed analysis of the underlying biological processes at the cell-type level. To facilitate and popularize the application of such methods, we developed CellMix, an R package that incorporates most state-of-the-art deconvolution methods, into an intuitive and extendible framework, providing a single entry point to explore, assess and disentangle gene expression data from heterogeneous samples.
Availability and implementation: The CellMix package builds on R/BioConductor and is available from http://web.cbio.uct.ac.za/∼renaud/CRAN/web/CellMix. It is currently being submitted to BioConductor. The package's vignettes notably contain additional information, examples and references.
Similar articles
-
DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data.Bioinformatics. 2013 Apr 15;29(8):1083-5. doi: 10.1093/bioinformatics/btt090. Epub 2013 Feb 21. Bioinformatics. 2013. PMID: 23428642
-
UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples.Bioinformatics. 2015 Jan 1;31(1):137-9. doi: 10.1093/bioinformatics/btu607. Epub 2014 Sep 10. Bioinformatics. 2015. PMID: 25212756 Free PMC article.
-
Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.Infect Genet Evol. 2012 Jul;12(5):913-21. doi: 10.1016/j.meegid.2011.08.014. Epub 2011 Sep 10. Infect Genet Evol. 2012. PMID: 21930246
-
GGtools: analysis of genetics of gene expression in bioconductor.Bioinformatics. 2007 Feb 15;23(4):522-3. doi: 10.1093/bioinformatics/btl628. Epub 2006 Dec 8. Bioinformatics. 2007. PMID: 17158513 Review.
-
[Transcriptomes for serial analysis of gene expression].J Soc Biol. 2002;196(4):303-7. J Soc Biol. 2002. PMID: 12645300 Review. French.
Cited by
-
Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.BMC Genomics. 2024 Sep 18;25(1):875. doi: 10.1186/s12864-024-10728-x. BMC Genomics. 2024. PMID: 39294558 Free PMC article.
-
Mega-Analysis of Gene Expression in Mouse Models of Alzheimer's Disease.eNeuro. 2019 Dec 4;6(6):ENEURO.0226-19.2019. doi: 10.1523/ENEURO.0226-19.2019. Print 2019 Nov/Dec. eNeuro. 2019. PMID: 31767574 Free PMC article.
-
Peripheral blood gene expression reveals an inflammatory transcriptomic signature in Friedreich's ataxia patients.Hum Mol Genet. 2018 Sep 1;27(17):2965-2977. doi: 10.1093/hmg/ddy198. Hum Mol Genet. 2018. PMID: 29790959 Free PMC article.
-
Brain high-throughput multi-omics data reveal molecular heterogeneity in Alzheimer's disease.PLoS Biol. 2024 Apr 30;22(4):e3002607. doi: 10.1371/journal.pbio.3002607. eCollection 2024 Apr. PLoS Biol. 2024. PMID: 38687811 Free PMC article.
-
Seq-ing improved gene expression estimates from microarrays using machine learning.BMC Bioinformatics. 2015 Sep 4;16:286. doi: 10.1186/s12859-015-0712-z. BMC Bioinformatics. 2015. PMID: 26338512 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases