Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 24:4:155.
doi: 10.3389/fpls.2013.00155. eCollection 2013.

Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

Affiliations

Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

Nicolas Denancé et al. Front Plant Sci. .

Abstract

Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens.

Keywords: abscisic acid; auxin; hormone crosstalk; pathogens; salicylic acid; trade-off; virulence factor.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Decoy strategies elaborated by pathogens and pests to interfere with plant hormone biosynthesis/signaling pathways. Phytopathogenic bacteria, phytoplasmas, fungi, and oomycetes secrete various effectors inside plant cells during infectious process. Once in the host cells, some effectors specifically bind to (underlined), induce and/or decrease (arrows/crossed lines) target gene expression or protein activity. Consequently, ABA-, SA-, or Auxin-mediated defense mechanisms are activated/repressed.
FIGURE 2
FIGURE 2
Balancing plant immune responses and fitness costs. Plant disease resistance responses are induced upon recognition of PAMPs/effectors from pathogens and pests by plant PRR proteins. This recognition modulates plant hormonal homeostasis and transcriptional reprograming of defensive genes. The activation of these inducible resistance responses (PTI and/or ETI) negatively regulates the expression of developmental-associated genes impacting on plant fitness costs. Effectors from pathogens interfere with hormonal balance and the activation of PTI and ETI. Pathogens can also negatively impact plant growth and developmental-associated processes (transcriptional expression of genes, negative regulation of signaling pathways, etc.; see text for details). Positive and negative interactions are indicated by arrows and squares, respectively. GA, gibberellic acid; BR, brassinosteroids.

Similar articles

Cited by

References

    1. Adie B. A., Perez-Perez J., Perez-Perez M. M., Godoy M., Sanchez-Serrano J. J., Schmelz E. A., et al. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19 1665–1681 - PMC - PubMed
    1. Anderson R. G., Casady M. S., Fee R. A., Vaughan M. M., Deb D., Fedkenheuer K., et al. (2012). Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. Plant J. 72 882–893 - PubMed
    1. Asselbergh B., De Vleesschauwer D., Hofte M. (2008). Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21 709–719 - PubMed
    1. Atkinson N. J., Urwin P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63 3523–3543 - PubMed
    1. Audenaert K., De Meyer G. B., Hofte M. M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 128 491–501 - PMC - PubMed

LinkOut - more resources