Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension
- PMID: 23599382
- PMCID: PMC3699826
- DOI: 10.1681/ASN.2012080839
Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension
Abstract
Various stimuli, including hormones and growth factors, modulate epithelial sodium channels (ENaCs), which fine-tune Na(+) absorption in the kidney. Members of the EGF family are important for maintaining transepithelial Na(+) transport, but whether EGF influences ENaC, perhaps mediating salt-sensitive hypertension, is not well understood. Here, the ENaC inhibitor benzamil attenuated the development of hypertension in Dahl salt-sensitive rats. Feeding these salt-sensitive rats a high-salt diet led to lower levels of EGF in the kidney cortex and enhanced the expression and activity of ENaC compared with feeding a low-salt diet. To directly evaluate the role of EGF in the development of hypertension and its effect on ENaC activity, we infused EGF intravenously while continuously monitoring BP of the salt-sensitive rats. Infusion of EGF decreased ENaC activity, prevented the development of hypertension, and attenuated glomerular and renal tubular damage. Taken together, these findings indicate that cortical EGF levels decrease with a high-salt diet in salt-sensitive rats, promoting ENaC-mediated Na(+) reabsorption in the collecting duct and the development of hypertension.
Figures
Similar articles
-
Role of Rho GDP dissociation inhibitor α in control of epithelial sodium channel (ENaC)-mediated sodium reabsorption.J Biol Chem. 2014 Oct 10;289(41):28651-9. doi: 10.1074/jbc.M114.558262. Epub 2014 Aug 27. J Biol Chem. 2014. PMID: 25164814 Free PMC article.
-
Inhibition of mTORC2 promotes natriuresis in Dahl salt-sensitive rats via the decrease of NCC and ENaC activity.Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F435-F449. doi: 10.1152/ajprenal.00403.2023. Epub 2024 May 23. Am J Physiol Renal Physiol. 2024. PMID: 38779754
-
Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling.Sci Rep. 2016 May 12;6:25746. doi: 10.1038/srep25746. Sci Rep. 2016. PMID: 27173481 Free PMC article.
-
Involvement of ENaC in the development of salt-sensitive hypertension.Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F135-F140. doi: 10.1152/ajprenal.00427.2016. Epub 2016 Dec 21. Am J Physiol Renal Physiol. 2017. PMID: 28003189 Free PMC article. Review.
-
Role of the epithelial sodium channel in salt-sensitive hypertension.Acta Pharmacol Sin. 2011 Jun;32(6):789-97. doi: 10.1038/aps.2011.72. Epub 2011 May 30. Acta Pharmacol Sin. 2011. PMID: 21623391 Free PMC article. Review.
Cited by
-
Renal sodium transport in renin-deficient Dahl salt-sensitive rats.J Renin Angiotensin Aldosterone Syst. 2016 Jul 21;17(3):1470320316653858. doi: 10.1177/1470320316653858. Print 2016 Jul. J Renin Angiotensin Aldosterone Syst. 2016. PMID: 27443990 Free PMC article.
-
Increased Epithelial Sodium Channel Activity Contributes to Hypertension Caused by Na+-HCO3- Cotransporter Electrogenic 2 Deficiency.Hypertension. 2015 Jul;66(1):68-74. doi: 10.1161/HYPERTENSIONAHA.115.05394. Epub 2015 May 4. Hypertension. 2015. PMID: 25941340 Free PMC article.
-
Characterization of purinergic receptor expression in ARPKD cystic epithelia.Purinergic Signal. 2018 Dec;14(4):485-497. doi: 10.1007/s11302-018-9632-5. Epub 2018 Nov 11. Purinergic Signal. 2018. PMID: 30417216 Free PMC article.
-
Increased ENaC activity during kidney preservation in Wisconsin solution.BMC Nephrol. 2019 Apr 29;20(1):145. doi: 10.1186/s12882-019-1329-7. BMC Nephrol. 2019. PMID: 31035971 Free PMC article.
-
Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension.Am J Physiol Renal Physiol. 2015 Feb 1;308(3):F179-97. doi: 10.1152/ajprenal.00455.2014. Epub 2014 Oct 29. Am J Physiol Renal Physiol. 2015. PMID: 25354941 Free PMC article. Review.
References
-
- Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee : Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 123: e18–e209, 2011 - PMC - PubMed
-
- Cowley AW, Jr: Long-term control of arterial blood pressure. Physiol Rev 72: 231–300, 1992 - PubMed
-
- Rossier BC, Schild L: Epithelial sodium channel: Mendelian versus essential hypertension. Hypertension 52: 595–600, 2008 - PubMed
-
- Cowley AW, Jr, Roman RJ: The role of the kidney in hypertension. JAMA 275: 1581–1589, 1996 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL092026/HL/NHLBI NIH HHS/United States
- R01 HL065289/HL/NHLBI NIH HHS/United States
- P01 HL082798/HL/NHLBI NIH HHS/United States
- DK088018/DK/NIDDK NIH HHS/United States
- HL92026/HL/NHLBI NIH HHS/United States
- P01 HL029587/HL/NHLBI NIH HHS/United States
- HL65289/HL/NHLBI NIH HHS/United States
- HL82798/HL/NHLBI NIH HHS/United States
- R21 DK088018/DK/NIDDK NIH HHS/United States
- R01 HL108880/HL/NHLBI NIH HHS/United States
- R56 HL065289/HL/NHLBI NIH HHS/United States
- HL108880/HL/NHLBI NIH HHS/United States
- HL29587/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical