Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep;280(18):4348-70.
doi: 10.1111/febs.12287. Epub 2013 May 9.

Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma

Affiliations
Free article
Review

Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma

Eva Bentmann et al. FEBS J. 2013 Sep.
Free article

Abstract

Stress granules (SGs) are cytoplasmic foci that rapidly form when cells are exposed to stress. They transiently store mRNAs encoding house-keeping proteins and allow the selective translation of stress-response proteins (e.g. heat shock proteins). Besides mRNA, SGs contain RNA-binding proteins, such as T cell internal antigen-1 and poly(A)-binding protein 1, which can serve as characteristic SG marker proteins. Recently, some of these SG marker proteins were found to label pathological TAR DNA binding protein of 43 kDa (TDP-43)- or fused in sarcoma (FUS)-positive cytoplasmic inclusions in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In addition, protein aggregates in other neurodegenerative diseases (e.g. tau inclusions in Alzheimer's disease) show a co-localization with T cell internal antigen-1 as well. Moreover, several RNA-binding proteins that are commonly found in SGs have been genetically linked to neurodegeneration. This suggests that SGs might play an important role in the pathogenesis of these proteinopathies, either by acting as a seed for pathological inclusions, by mediating translational repression or by trapping essential RNA-binding proteins, or by a combination of these mechanisms. This minireview gives an overview of the general biology of SGs and highlights the recently identified connection of SGs with TDP-43, FUS and other proteins involved in neurodegenerative diseases. We propose that pathological inclusions containing RNA-binding proteins, such as TDP-43 and FUS, might arise from SGs and discuss how SGs might contribute to neurodegeneration via toxic gain or loss-of-function mechanisms.

Keywords: ALS; FTLD; FUS; RNA-binding proteins; TDP-43; TLS; neurodegeneration; stress granules.

PubMed Disclaimer

Similar articles

Cited by

  • Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS.
    Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, Gal J. Kamelgarn M, et al. Biochim Biophys Acta. 2016 Oct;1862(10):2004-14. doi: 10.1016/j.bbadis.2016.07.015. Epub 2016 Jul 25. Biochim Biophys Acta. 2016. PMID: 27460707 Free PMC article.
  • Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants.
    Reber S, Stettler J, Filosa G, Colombo M, Jutzi D, Lenzken SC, Schweingruber C, Bruggmann R, Bachi A, Barabino SM, Mühlemann O, Ruepp MD. Reber S, et al. EMBO J. 2016 Jul 15;35(14):1504-21. doi: 10.15252/embj.201593791. Epub 2016 Jun 1. EMBO J. 2016. PMID: 27252488 Free PMC article.
  • Serum Uric Acid Levels Predict Mortality Risk in Male Amyotrophic Lateral Sclerosis Patients.
    Xu LQ, Hu W, Guo QF, Xu GR, Wang N, Zhang QJ. Xu LQ, et al. Front Neurol. 2021 Mar 11;12:602663. doi: 10.3389/fneur.2021.602663. eCollection 2021. Front Neurol. 2021. PMID: 33776880 Free PMC article.
  • Protein clearance strategies for disease intervention.
    Hommen F, Bilican S, Vilchez D. Hommen F, et al. J Neural Transm (Vienna). 2022 Feb;129(2):141-172. doi: 10.1007/s00702-021-02431-y. Epub 2021 Oct 23. J Neural Transm (Vienna). 2022. PMID: 34689261 Free PMC article. Review.
  • Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algül H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A, Bai H, Bai J, Bai XY, Bailly Y, Balaji KN, … See abstract for full author list ➔ Klionsky DJ, et al. Autophagy. 2016;12(1):1-222. doi: 10.1080/15548627.2015.1100356. Autophagy. 2016. PMID: 26799652 Free PMC article. No abstract available.

Publication types

MeSH terms