Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 11:12:61.
doi: 10.1186/1475-2875-12-61.

Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

Justin M Cohen et al. Malar J. .

Abstract

Background: As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases.

Methods: Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season.

Results: Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012.

Conclusions: The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cases identified by passive and reactive surveillance in Swaziland after implementation of case investigation and concurrent rainfall. The high transmission period of January to April 2011 was mapped separately from the low season of May to December. Cases from 2010 were not used for mapping.
Figure 2
Figure 2
Calibration (left) and receiver-operator characteristic (ROC) (right) plots to assess model quality for (A) the high season model and (B) the low season model. The calibration plot suggests no bias if observed standard errors overlap the diagonal. Area under the curve (AUC) in the ROC plot will be 0.5 if the model is no better than random assignment.
Figure 3
Figure 3
Predicted probability map for presence of locally acquired malaria cases in Swaziland during the high transmission months of January to April 2011.
Figure 4
Figure 4
Predicted probability map for presence of locally acquired malaria cases in Swaziland during the low transmission months of May to December 2011.
Figure 5
Figure 5
Comparison of predicted risk at 10,000 random locations (sampled first proportionally to population distribution and second at random from across the country) to predicted risk at the location of actual local case households from A) the high transmission season of January-April and B) the low transmission season from May through October.

Similar articles

Cited by

References

    1. Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: the WHO perspective. Trop Med Int Health. 2009;14:802–809. doi: 10.1111/j.1365-3156.2009.02287.x. - DOI - PubMed
    1. Feachem R, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, Sabot O, Rodriguez MH, Abeyasinghe RR, Ghebreyesus TA, Snow RW. Shrinking the malaria map: progress and prospects. Lancet. 2010;376:1566–1578. doi: 10.1016/S0140-6736(10)61270-6. - DOI - PMC - PubMed
    1. World Health Organization. World Malaria Report 2011. Geneva: World Health Organization; 2011.
    1. Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett GA. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–1603. doi: 10.1016/S0140-6736(10)61269-X. - DOI - PMC - PubMed
    1. World Health Organization Regional Office for the Eastern Mediterranean. Guidelines on the elimination of residual foci of malaria transmission. Geneva: World Health Organization; 2007.

Publication types