Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 15;1(1):24.
doi: 10.1186/2047-9158-1-24.

Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration

Affiliations

Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration

Yale Duan et al. Transl Neurodegener. .

Abstract

In addition to senile plaques and cerebral amyloid angiopathy, the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles (NFTs) represents another neuropathological hallmark in AD brain. Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability. When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former, tau is hyperphosphorylated and the level of the free tau fractions elevated. The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain. We have discussed the role of Aβ in AD in our previous review, this review focused on the recent advances in tau-mediated AD pathology, mainly including tau hyperphosphorylation, propagation of tau pathology and the relationship between tau and Aβ.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Tau-mediated neurodegeneration. Physiologically tau protein can bind and thereby stabilize microtubules (MTs). The attachment of tau to MT is regulated by its phosphorylation level. Phosphorylation of tau mediated by kinase (Cdk5, GSK3β, MARK and ERK2) may lead to the detachment of tau from MT and hereby cause MT depolymerization. Conversely, phosphatase (PP1, PP2A, PP2B and PP2C) will reduce the phosphorylation level of tau and restore the binding ability of tau for MT. Such equilibrium between the roles of kinases and phosphatases is disrupted under pathological condition, and increase in the kinase activity and decrease in the phosphatase activity will cause tau hyperphosphoryation. Hyperphosphorylated tau protein is misfolded and forms β-sheet-containing structure paired helical filaments (PHFs). These structure transitions will lead to more organized aggregates, and eventually develop neurofibrillary tangles (NFT) inside neurons. NFT will impair normal axonal transport, disrupt synaptic plasticity, and finally induce cell loss.

Similar articles

Cited by

References

    1. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–1159. doi: 10.1146/annurev.neuro.24.1.1121. - DOI - PubMed
    1. Lee VMY. Tauists and baptists United–Well Almost! Science. 2001;293:1446–1447. doi: 10.1126/science.1064684. - DOI - PubMed
    1. Dong SZ, Duan YL, Gu F, Hu YH, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: a re-evaluation of amyloid cascade hypothesis. Translational Neurodegeneration. 2012;1:18. doi: 10.1186/2047-9158-1-18. - DOI - PMC - PubMed
    1. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989;3:519–526. doi: 10.1016/0896-6273(89)90210-9. - DOI - PubMed
    1. Lee G, Cowan N, Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988;239:285–288. doi: 10.1126/science.3122323. - DOI - PubMed

LinkOut - more resources